초록
The present invention relates to planar compound field antennas. Improvements relate particularly, but not exclusively, to compound loop antennas having coplanar electric field radiators and magnetic loops with electric fields orthogonal to magnetic fields that achieve performance benefits in higher bandwidth (lower Q), greater radiation intensity/power/gain, and greater efficiency.
The present invention relates to planar compound field antennas. Improvements relate particularly, but not exclusively, to compound loop antennas having coplanar electric field radiators and magnetic loops with electric fields orthogonal to magnetic fields that achieve performance benefits in higher bandwidth (lower Q), greater radiation intensity/power/gain, and greater efficiency.
대표
청구항
▼
1. A multi-layered planar antenna, comprising: a magnetic loop located on a first plane and configured to generate a magnetic field, wherein the magnetic loop has a first inductive reactance adding to a total inductive reactance of the multi-layered planar antenna;an electric field radiator located on the first plane and within the magnetic loop, the electric field radiator coupled to the magnetic loop and configured to emit an electric field orthogonal to the magnetic field, wherein the electric field radiator has a first capacitive reactance adding to ...
1. A multi-layered planar antenna, comprising: a magnetic loop located on a first plane and configured to generate a magnetic field, wherein the magnetic loop has a first inductive reactance adding to a total inductive reactance of the multi-layered planar antenna;an electric field radiator located on the first plane and within the magnetic loop, the electric field radiator coupled to the magnetic loop and configured to emit an electric field orthogonal to the magnetic field, wherein the electric field radiator has a first capacitive reactance adding to a total capacitive reactance of the multi-layered planar antenna, and wherein a physical arrangement between the electric field radiator and the magnetic loop results in a second capacitive reactance adding to the total capacitive reactance; anda tunable patch located on a second plane below the first plane, wherein the tunable patch has a third capacitive reactance adding to the total capacitive reactance, and wherein the total inductive reactance substantially matches the total capacitive reactance. 2. The multi-layered antenna as recited in claim 1, further comprising an electrical trace coupling the electric field radiator to the magnetic loop, wherein the electrical trace has a shape selected from the group consisting of a substantially smooth curve and a shape minimizing a number of bends in the electrical trace, and wherein the electrical trace has a second inductive reactance adding to the total inductive reactance. 3. The multi-layered antenna as recited in claim 2, wherein the electrical trace couples the electric field radiator to the magnetic loop at an electrical degree location approximately 90 degrees or approximately 270 degrees from a drive point of the magnetic loop. 4. The multi-layered antenna as recited in claim 2, wherein the electrical trace couples the electric field radiator to the magnetic loop at a reflective minimum point where a current flowing through the magnetic loop is at a reflective minimum. 5. The multi-layered antenna as recited in claim 2, wherein the electrical trace is configured to electrically lengthen the electric field radiator. 6. The multi-layered antenna as recited in claim 1, wherein the electric field radiator is directly coupled to the magnetic loop at an electrical degree location approximately 90 degrees or approximately 270 degrees from a drive point of the magnetic loop. 7. The multi-layered antenna as recited in claim 1, wherein the electric field radiator is directly coupled to the magnetic loop at a reflective minimum point where a current flowing through the magnetic loop is at a reflective minimum. 8. The multi-layered antenna as recited in claim 1, wherein the electric field radiator has an electrical length appropriate to generate a resonance at a center frequency of operation of the multi-layered antenna. 9. The multi-layered antenna as recited in claim 1, wherein a current flowing through the magnetic loop flows into the electric field radiator and the current is reflected along an opposite direction into the magnetic loop creating the electric field orthogonal to the magnetic field. 10. The multi-layered antenna as recited in claim 1, wherein the magnetic loop has a shape selected from the group consisting of a substantially circular shape, a substantially ellipsoid shape, a substantially rectangular shape, and a substantially polygonal shape. 11. The multi-layered antenna as recited in claim 10, wherein the substantially rectangular shape and the substantially polygonal shape of the magnetic loop has one or more corners cut at an angle. 12. The multi-layered antenna as recited in claim 1, wherein the magnetic loop is formed from a plurality of sections continuously connected, wherein at least one segment from the plurality of segments is formed by a first segment having a first width, a middle segment having a middle width, and a second segment having a second width, wherein a first end of the first segment is connected to and adjacent to a first end of the middle segment, wherein a second end of the middle segment is connected and adjacent to a first end of the second segment, and wherein the first width and the second width are different from the middle width. 13. The multi-layered antenna as recited in claim 12, wherein at least one segment from the first segment, the middle segment, and the second segment is tapered. 14. The multi-layered antenna as recited in claim 1, wherein the electric field radiator has an electrical length and is configured to emit the electric field at a first frequency of operation, further comprising a second electric field radiator located on the first plane and within the magnetic loop, the second electric field radiator coupled to the magnetic loop and configured to emit a second electric field orthogonal to the magnetic field, wherein the second electric field radiator has a third capacitive reactance adding to the total capacitive reactance, wherein the second electric field radiator has a second electrical length and is configured to emit the second electric field at a second frequency of operation, wherein a second physical arrangement between the second electric field radiator and the magnetic loop results in a fourth capacitive reactance adding to the total capacitive reactance. 15. The multi-layered antenna as recited in claim 1, further comprising one or more additional electric field radiators located on the first plane and within the magnetic loop, the one or more additional electric field radiators coupled to the magnetic loop and configured to emit one or more additional electric fields orthogonal to the magnetic field, wherein the one or more additional electric field radiators have an additional capacitive reactance adding to the total capacitive reactance, and wherein a second physical arrangement between the electric field radiator, the one or more additional electric field radiators and the magnetic loop results in an additional capacitive reactance adding to the total capacitive reactance. 16. The multi-layered antenna as recited in claim 15, further comprising one or more additional electrical traces coupling at least one additional electric field radiator among the one or more additional electric field radiators to the magnetic loop. 17. The multi-layered antenna as recited in claim 16, wherein an electrical trace among the one or more additional electrical traces couples the at least one additional electric field radiator to the magnetic loop at an electrical degree location approximately 90 degrees or approximately 270 degrees from a drive point of the magnetic loop. 18. The multi-layered antenna as recited in claim 16, wherein an electrical trace among the one or more additional electrical traces couples the at least one additional electric field radiator to the magnetic loop at a reflective minimum point where a current flowing through the magnetic loop is at a reflective minimum. 19. The multi-layered antenna as recited in claim 15, wherein at least one additional electric field radiator among the one or more additional electric field radiators is directly coupled to the magnetic loop at an electrical degree location approximately 90 degrees or approximately 270 degrees from a drive point of the magnetic loop. 20. The multi-layered antenna as recited in claim 15, wherein at least one additional electric field radiator among the one or more additional electric field radiators is directly coupled to the magnetic loop at a reflective minimum point where a current flowing through the magnetic loop is at a reflective minimum. 21. The multi-layered antenna as recited in claim 1, wherein the electric field radiator is substantially J shaped. 22. The multi-layered antenna as recited in claim 1, wherein the tunable patch is positioned at a location along the second plane opposite the electric field radiator. 23. A multi-planar antenna, comprising: one or more magnetic loops located on a first plane and configured to generate one or more magnetic fields, wherein the one or more magnetic loops have a first inductive reactance adding to a total inductive reactance of the multi-planar antenna;one or more electric field radiators located on the first plane configured to emit one or more electric fields orthogonal to the one or more magnetic fields, each electric field radiator among the one or more electric field radiators coupled to each magnetic loop among the one or more magnetic loops, wherein the one or more electric field radiators have a first capacitive reactance adding to a total capacitive reactance of the multi-planar antenna, wherein a physical arrangement between the one or more electric field radiators and the one or more magnetic loops results in a second capacitive reactance adding to the total capacitive reactance; anda wideband element located on a second plane and configured to produce a ground plane, wherein the wideband element has a second inductive reactance adding to the total inductive reactance and a third capacitive reactance adding to the total capacitive reactance, wherein the wideband element is configured to enable the total inductive reactance to substantially match the total capacitive reactance over a wide bandwidth based on one or more physical adjustments to the wideband element. 24. The multi-planar antenna as recited in claim 23, further comprising one or more phase trackers located on the first plane, each phase tracker among the one or more phase trackers coupled to each magnetic loop among the one or more magnetic loops and positioned within each magnetic loop, each phase tracker having a third inductive reactance adding to the total inductive reactance and a fourth capacitive reactance adding to the total capacitive reactance. 25. The multi-planar antenna as recited in claim 24, wherein each phase tracker is substantially triangular shaped, wherein each magnetic loop further comprises a drive point, and wherein a tip of the substantially triangular shaped phase tracker is aligned with an electrical degree location approximately 90 degrees from the drive point or an electrical degree location approximately 270 degrees from the drive point. 26. The multi-planar antenna as recited in claim 24, wherein each phase tracker is substantially triangular shaped, wherein a tip of the substantially triangular shaped phase tracker is aligned with a reflective minimum point where a current flowing through each magnetic loop is at a reflective minimum. 27. The multi-planar antenna as recited in claim 24, wherein the third inductive reactance of each phase tracker is based on a height of each phase tracker. 28. The multi-planar antenna as recited in claim 24, wherein the fourth capacitive reactance of each phase tracker is based on a width of each phase tracker. 29. The multi-planar antenna as recited in claim 24, wherein a phase tracker among the one or more phase trackers is positioned opposite a corresponding electric field radiator among the one or more electric field radiators. 30. The multi-planar antenna as recited in claim 24, wherein a phase tracker among the one or more phase trackers is positioned adjacent a corresponding electric field radiator among the one or more electric field radiators. 31. The multi-planar antenna as recited in claim 23, wherein the one or more electric field radiators are substantially rectangular shaped, wherein the one or more electric field radiators are positioned on an outside of each magnetic loop and along a side of each magnetic loop. 32. The multi-planar antenna as recited in claim 23, wherein the wideband element includes one or more trapezoid shaped elements, each trapezoid shaped element among the one or more trapezoid shaped elements configured to vary the second inductive reactance and the third capacitive reactance over the wide bandwidth. 33. The multi-planar antenna as recited in claim 32, wherein the one or more physical adjustments include varying a slope of a top side of each trapezoid shaped element. 34. The multi-planar antenna as recited in claim 32, wherein the one or more physical adjustments include varying a dimension of one or more sides of each trapezoid shaped element. 35. The multi-planar antenna as recited in claim 32, wherein each trapezoid shaped element is aligned with each magnetic loop. 36. The multi-planar antenna as recited in claim 32, wherein a first vertical side and a second vertical side of each trapezoid shaped element are configured to operate as a counterpoise to each electric field radiator. 37. The multi-planar antenna as recited in claim 32, wherein the wideband element further includes one or more choke joints and a ground element, wherein the one or more choke joints are configured to isolate the one or more trapezoid shaped elements from the ground element. 38. The multi-planar antenna as recited in claim 32, wherein the ground element is substantially rectangular shaped, and wherein a bottom left corner of the ground element beneath a first trapezoid shaped element among the one or more trapezoid shaped elements and a bottom right corner of the ground element beneath a last trapezoid shaped element among the one or more trapezoid shaped elements are cut off to prevent a reflection of a first signal of the first trapezoid shaped element and a reflection of a last signal of the last trapezoid shaped element. 39. The multi-planar antenna as recited in claim 38, wherein one or more inner trapezoid shaped elements among the one or more trapezoid shaped elements positioned between the first trapezoid shaped element and the last trapezoid shaped elements set a phase angle of the multi-planar antenna by reflecting a signal of the one or more inner trapezoid shaped elements to the ground element. 40. The multi-planar antenna as recited in claim 23, wherein each electric field radiator among the one or more electric field radiators has an electrical length appropriate to generate a resonance at a center frequency of operation of the multi-planar antenna. 41. The multi-planar antenna as recited in claim 23, wherein a current flowing through each magnetic loop among the one or more magnetic loops flows into each electric field radiator among the one or more electric field radiators and the current is reflected along an opposite direction into each magnetic loop, creating each electric field orthogonal to each magnetic field. 42. The multi-planar antenna as recited in claim 23, wherein each magnetic loop among the one or more magnetic loops has a substantially polygonal shape. 43. The multi-planar antenna as recited in claim 42, wherein the substantially polygonal shape has one or more corners that are cut at an angle. 44. The multi-planar antenna as recited in claim 23, wherein each magnetic loop among the one or more magnetic loops has a shape selected from the group consisting of a substantially circular shape, a substantially ellipsoid shape, a substantially rectangular shape, and a substantially polygonal shape.