$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Method and apparatus for aerodynamic flow control using compact high-frequency fluidic actuator arrays

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) B64C-021/04   
미국특허분류(USC) 244/207; 244/204; 244/001N
출원번호 US-0804225 (2010-07-16)
등록번호 US-8382043 (2013-02-26)
발명자 / 주소
출원인 / 주소
인용정보 피인용 횟수 : 11  인용 특허 : 5
초록

The present invention is directed to the manufacture of and the use of an aerodynamic flow control device having a compact array of a plurality of fluidic actuators in planar, curved, circular and annular configurations. The compact array of fluidic actuators of the invention may be designed to produce oscillating or pulsed jets at the exit ports with frequencies in the range of 1-22 kHz. They may be integrally manufactured along with the wing sections, flaps, tail and rudder of airplane, the inlet or exit geometries of a jet engine. When supplied with a...

대표
청구항

1. An aerodynamic flow control device comprising a compact arrangement of an array of a plurality of discrete fluidic actuators having non-interconnected feedback channels located on a substrate wherein each of said plurality of said fluidic actuators comprises an input port and an exit port wherein each of said actuators is capable of producing at said exit port an oscillating or sweeping jet either in-plane or perpendicular to the plane of the fluid flow inside said actuator further comprising a common extension chamber extending from the exit ports of...

이 특허를 인용한 특허 피인용횟수: 11

  1. Baruzzini, Dan; Domel, Neal David; Hakes, Jeffrey G.; Miller, Daniel N.. Active bleed for airfoils. USP2016129512821.
  2. Bauer, Matthias; Haucke, Frank; Nitsche, Wolfgang; Goelling, Burkhard. Flow body having a leading edge, a surface and an active flow control system and vehicle comprising at least one such flow body and an air source. USP2016069371131.
  3. Raghu, Surya. Flow control actuator with an adjustable frequency. USP2018029897118.
  4. Boespflug, Matthew Patrick; Saddoughi, Seyed Gholamali; Bennett, Jr., Grover Andrew; Opaits, Dmytro Floriyovych. Method of using an active flow control system for lift enhancement or destruction in a wind turbine blade. USP2015109162754.
  5. Lakebrink, Matthew T.; Mani, Mortaza. Simplified fluidic oscillator for controlling aerodynamics of an aircraft. USP20180910081420.
  6. Nolcheff, Nick. Structural frame integrated with variable-vectoring flow control for use in turbine systems. USP20190310221720.
  7. Baruzzini, Dan J.; Miller, Daniel N.; Domel, Neal D.; Hakes, Jeff G.. Suprression of shock-induced airflow separation. USP20180810054048.
  8. Reckzeh, Daniel; Goelling, Burkhard; Lengers, Matthias. Surface element for an aircraft, aircraft and method for improving high-lift generation on a surface element. USP2016039272772.
  9. Seifert, Avraham; Dayan, Isaac; Shtendel, Tom. Synchronization of fluidic actuators. USP2017089718538.
  10. Shmilovich, Arvin; Yadlin, Yoram. System and method for enhancing the high-lift performance of an aircraft. USP20180610005544.
  11. Reckzeh, Daniel; Goelling, Burkhard; Lengers, Matthias. Wing for an aircraft, aircraft and method for reducing aerodynamic drag and improving maximum lift. USP2016039278753.