대표
청구항
▼
1. An implantable drug delivery device for releasing one or more active ingredients at a substantially zero order rate in vitro by diffusion through a polyurethane based polymer for an extended period of time, said implantable drug delivery device comprising a polyurethane-based polymer configured to provide a cylindrically shaped reservoir, wherein the reservoir is sealed after being charged with an effective amount of a solid formulation comprising one or more active ingredients and wherein the one or more active ingredients and the polyurethane-based ...
1. An implantable drug delivery device for releasing one or more active ingredients at a substantially zero order rate in vitro by diffusion through a polyurethane based polymer for an extended period of time, said implantable drug delivery device comprising a polyurethane-based polymer configured to provide a cylindrically shaped reservoir, wherein the reservoir is sealed after being charged with an effective amount of a solid formulation comprising one or more active ingredients and wherein the one or more active ingredients and the polyurethane-based polymer are selected such that either: (i) both the one or more active ingredients and the polyurethane-based polymer exhibit hydrophilic characteristics, or (ii) both the one or more active ingredients and the polyurethane-based polymer exhibit hydrophobic characteristics, wherein the one or more active ingredients are selected from drugs that can act on the central nervous system, psychic energizers, tranquilizers, anti-convulsants, muscle relaxants, anti-parkinson, analgesic, anti-inflammatory, anesthetic, antispasmodic, muscle contractants, anti-microbials, anti-malarials, hormonal agents, sympathomimetic, cardiovascular, diuretics, and antiparasitic. 2. The implantable drug delivery device of claim 1, wherein the polyurethane based polymer is selected from the group consisting of thermoplastic polyurethane and thermoset polyurethane. 3. The implantable drug delivery device of claim 2, wherein the thermoplastic polyurethane comprises macrodiols, diisocyanates, difunctional chain extenders, or mixtures thereof. 4. The implantable drug delivery device of claim 2, wherein the thermoset polyurethane comprises multifunctional polyols, diisocyanates, chain extenders or mixtures thereof. 5. The implantable drug delivery device of claim 4, wherein the thermoset polyurethane comprises a polymer chain and cross-linking members, said thermoset polyurethane further including unsaturated bonds in the polymer chains and crosslinkers, initiators, or both as cross-linking members. 6. The implantable drug delivery device of claim 1, which is conditioned and primed under one or more parameters selected from the group consisting of time, temperature, and medium, and wherein the medium is selected to influence the desired delivery rates of the one or more active ingredients. 7. The implantable drug delivery device of claim 1, wherein the polyurethane comprises a hydrophilic pendant group selected from the group consisting of: ionic groups, carboxyl groups, ether groups, hydroxyl groups and mixtures of any two or more thereof. 8. The implantable drug delivery device of claim 1, wherein the one or more active ingredients and the polyurethane-based polymer are selected such that both the one or more active ingredients and the polyurethane-based polymer exhibit hydrophilic characteristics. 9. The implantable drug delivery device of claim 1, wherein the one or more active ingredients and the polyurethane-based polymer are selected such that both the one or more active ingredients and the polyurethane-based polymer exhibit hydrophobic characteristics. 10. The implantable drug delivery device of claim 1, wherein the solid formulation includes one or more pharmaceutically acceptable carriers that are not required for the substantially zero order release rate in vitro of the one or more active ingredients through the polyurethane-based polymer. 11. The implantable drug delivery device of claim 10, wherein the one or more pharmaceutically acceptable carriers are not required for the substantially zero order release rate in vitro of the one or more active ingredients as governed by Fick's Law of Diffusion. 12. An implantable drug delivery device for releasing one or more active ingredients at a substantially zero order rate in vitro by diffusion through a polyurethane-based polymer for a period of six weeks or more from the time of implantation, said implantable drug delivery device comprising a polyurethane-based polymer configured to provide a cylindrically shaped reservoir, wherein the reservoir is sealed after being charged with an effective amount of a solid formulation comprising one or more active ingredients exhibiting hydrophilic characteristics and the polyurethane-based polymer exhibits a percent equilibrium water content (% EWC) of about 30% or less, wherein the one or more active ingredients are selected from drugs that can act on the central nervous system, psychic energizers, tranquilizers, anti-convulsants, muscle relaxants, anti-parkinson, analgesic, anti-inflammatory, anesthetic, antispasmodic, muscle contractants, anti-microbials, anti-malarials, hormonal agents, sympathomimetic, cardiovascular, diuretics, and antiparasitic. 13. The implantable drug delivery device of claim 12, wherein the polyurethane-based polymer exhibits a % EWC ranging from about 15% to about 30%. 14. The implantable drug delivery device of claim 13, wherein the solid formation includes one or more pharmaceutically acceptable carriers that are not required for the substantially zero order release rate in vitro of the one or more active ingredients through the polyurethane-based polymer. 15. The implantable drug delivery device of claim 14, wherein the one or more pharmaceutically acceptable carriers are not required for the substantially zero order release rate in vitro of the one or more active ingredients as governed by Fick's Law of Diffusion. 16. The implantable drug delivery device of claim 14, wherein the solid formulation includes stearic acid. 17. A process for manufacturing a drug delivery device comprising selecting one or more active ingredients; selecting a polyurethane-based polymer formed as a hollow tube; loading a solid formulation comprising the one or more active ingredients into the tube; and sealing the tube; wherein the one or more active ingredients exhibit hydrophilic characteristics, and the polyurethane-based polymer exhibits a percent equilibrium water content (% EWC) of about 30% or less; and wherein the drug delivery device delivers the one or more active ingredients by diffusion through the polyurethane-based polymer at a substantially zero order release rate in vitro. 18. The process of claim 17, wherein the sealing of the hollow tube comprises inserting a pre-fabricated plug into an open end and applying heat or solvent to the pre-fabricated plug and polyurethane-based polymer. 19. The process of claim 17, wherein the sealing comprises inserting a pre-fabricated end plug at an open end of the hollow tube; applying an appropriate light-initiated and/or heat-initiated thermoset polyurethane formulation into an interface formed between the pre-fabricated end plug and the open end; and curing the polyurethane formulation with light and/or heat to seal the pre-fabricated plug in the end of the tube. 20. The process of claim 17 further comprising conditioning and priming comprises selecting a parameter selected from the group consisting of time, temperature, and medium to influence the substantially zero order release rate in vitro of the one or more active ingredients through the polyurethane-based polymer. 21. The process of claim 17, wherein the one or more active ingredients and the polyurethane-based polymer are selected such that both the one or more active ingredients and the polyurethane-based polymer exhibit hydrophilic characteristics. 22. The process of claim 17, wherein the solid formulation includes one or more pharmaceutically acceptable carriers that are not required for the substantially zero order release rate in vitro of the one or more active ingredients through the polyurethane-based polymer. 23. The process of claim 22, wherein the one or more pharmaceutically acceptable carriers are not required for the substantially zero order release rate in vitro of the one or more active ingredients as governed by Fick's Law of Diffusion. 24. The process of claim 17, wherein the hollow tube is formed by extrusion molding, injection molding, or spin-casting of the polyurethane-based polymer. 25. The process of claim 17, wherein the hollow tube is formed with two open ends. 26. The process of claim 17, wherein the hollow tube is formed with two open ends, and one end is sealed prior to the loading. 27. The process of claim 17, wherein the hollow tube is formed with one open end and one closed end. 28. The process of claim 17, wherein the one or more active ingredients are selected from drugs that can act on the central nervous system, psychic energizers, tranquilizers, anti-convulsants, muscle relaxants, anti-parkinson, analgesic, anti-inflammatory, anesthetic, antispasmodic, muscle contractants, anti-microbials, anti-malarials, hormonal agents, sympathomimetic, cardiovascular, diuretics, and antiparasitic. 29. An implantable drug delivery device for releasing one or more active ingredients at a substantially zero order rate in vitro by diffusion through a polyurethane based polymer for an extended period of time, said implantable drug delivery device comprising a polyurethane-based polymer configured to provide a cylindrically shaped reservoir, wherein the reservoir is sealed after being charged with an effective amount of a solid formulation comprising one or more active ingredients and wherein the one or more active ingredients and the polyurethane-based polymer are selected such that either: (i) both the one or more active ingredients and the polyurethane-based polymer exhibit hydrophilic characteristics, or (ii) both the one or more active ingredients and the polyurethane-based polymer exhibit hydrophobic characteristics, wherein the one or more active ingredients comprise histrelin or a pharmaceutically acceptable salt thereof. 30. The drug delivery device of claim 29, wherein the drug delivery device is conditioned and primed in an aqueous solution. 31. The drug delivery device of claim 29, wherein the solid formulation further comprises one or more pharmaceutically acceptable carriers. 32. The drug delivery device of claim 31, wherein the one or more pharmaceutically acceptable carriers comprise stearic acid.