$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Radiance processing by demultiplexing in the frequency domain 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • G06T-003/00
  • G06T-011/00
  • G06K-009/74
  • G03B-019/12
출원번호 US-0186392 (2008-08-05)
등록번호 US-8559756 (2013-10-15)
발명자 / 주소
  • Georgiev, Todor G.
  • Intwala, Chintan
  • Babacan, Sevket Derin
출원인 / 주소
  • Adobe Systems Incorporated
대리인 / 주소
    Wolfe-SBMC
인용정보 피인용 횟수 : 122  인용 특허 : 67

초록

Method and apparatus for radiance processing by demultiplexing in the frequency domain. A frequency domain demultiplexing module obtains a radiance image captured with a lens-based radiance camera. The image includes optically mixed spatial and angular frequency components of light from a scene. The

대표청구항

1. A system, comprising: at least one processor; anda memory comprising program instructions that are executable by the at least one processor to:obtain a radiance image of a scene captured with a lens-based radiance camera comprising an array of refracting microlenses, the radiance image including

이 특허에 인용된 특허 (67)

  1. Georgiev Todor, 3D graphics based on images and morphing.
  2. Raskar, Ramesh; Agrawal, Amit K., 4D light field cameras.
  3. Raskar, Ramesh; Agrawal, Amit Kumar, 4D light field cameras.
  4. Hauschild,Dirk, Apparatus for shaping a light beam.
  5. Okano Fumio,JPX ; Hoshino Haruo,JPX ; Arai Jun,JPX ; Mishina Tomoyuki,JPX, Autostereoscopic image apparatus.
  6. St. Clair Richard C. (Ridgecrest CA), CCD camera interface circuit.
  7. Bayer Bryce E. (Rochester NY), Color imaging array.
  8. Ibe,Hiroshi, Color-image pickup device in which an R picture signal is relatively enhanced with distance from center of light-reception area.
  9. Meyers Mark Marshall, Compact digital camera with segmented fields of view.
  10. Toh, Peng Seng, Confocal imaging.
  11. Wakai Hideyuki (Hiratsuka JPX) Mizoguchi Kiyokazu (Hiratsuka JPX) Suzuki Toru (Hiratsuka JPX) Terada Keiji (Hiratsuka JPX) Moriya Masato (Hiratsuka JPX) Ando Manabu (Hiratsuka JPX) Shio Koji (Hiratsu, Confocal optical apparatus.
  12. Ng, Yi-Ren; Hanrahan, Patrick M.; Horowitz, Mark A.; Levoy, Marc S., Correction of optical aberrations.
  13. Stauffer Norman L. (Englewood CO), Crossed cylindrical lens.
  14. Konishi,Masahiro, Digital camera and method of controlling the same.
  15. Yukawa,Kazuhiko; Niikawa,Masahito, Digital camera having controller for reducing occurrences of blur in displayed images.
  16. Georgiev, Todor G., Fast computational camera based on two arrays of lenses.
  17. Koyama Takeshi (Tokyo JPX) Ohtaka Keiji (Tokyo JPX), Focus detecting device.
  18. Georgiev, Todor G.; Lumsdaine, Andrew, Focused plenoptic camera employing different apertures or filtering at different microlenses.
  19. Georgiev, Todor G.; Lumsdaine, Andrew, Focused plenoptic camera employing different apertures or filtering at different microlenses.
  20. Georgiev, Todor G.; Lumsdaine, Andrew, Focused plenoptic camera employing microlenses with different focal lengths.
  21. Kenneth A. Goldberg, Graphical user interface for image acquisition and processing.
  22. Oskotsky Mark L., Illumination system having spatially separate vertical and horizontal image planes for use in photolithography.
  23. Utagawa, Ken, Image input apparatus, photodetection apparatus, and image synthesis method.
  24. Timmers Wilhelmus A. G. (Eindhoven NLX), Image projection system with autofocusing.
  25. Kawai,Takashi, Image-taking apparatus and monitoring system.
  26. Ng, Yi-Ren; Hanrahan, Patrick M.; Levoy, Marc S.; Horowitz, Mark A., Imaging arrangements and methods therefor.
  27. Yamagata, Michihiro; Okayama, Hiroaki; Boku, Kazutake; Tanaka, Yasuhiro; Hayashi, Kenichi; Fushimi, Yoshimasa; Murata, Shigeki; Hayashi, Takayuki, Imaging device including a plurality of lens elements and a imaging sensor.
  28. de Montebello Roger L. (New York NY) Globus Ronald P. (New York NY) Buck Howard S. (New York NY), Integral photography apparatus and method of forming same.
  29. Davies Neil,GBX ; McCormick Malcolm,GBX, Lens arrangements.
  30. Georgiev, Todor G., Light field microscope with lenslet array.
  31. Babacan, Sevket Derin; Georgiev, Todor G., Method and apparatus for block-based compression of light-field images.
  32. Babacan, Sevket Derin; Georgiev, Todor G., Method and apparatus for block-based compression of light-field images.
  33. Nemirovskiy Yevgeniy, Method and apparatus for improved three dimensional photography.
  34. Georgiev, Todor G.; Intwala, Chintan, Method and apparatus for radiance capture by multiplexing in the frequency domain.
  35. Georgiev, Todor G.; Intwala, Chintan, Method and apparatus for radiance capture by multiplexing in the frequency domain.
  36. Cohen Michael F. ; Gortler Steven J. ; Grzeszczuk Radek,CAX ; Szeliski Richard S., Method and system for digital plenoptic imaging.
  37. Levoy Marc ; Hanrahan Pat, Method and system for light field rendering.
  38. Pelc Norbert J. (Wauwatosa WI) Glover Gary H. (Waukesha WI), Method for reducing image artifacts due to projection measurement inconsistencies.
  39. Matsumoto Kazuya (Yokohama JA) Yano Akio (Kawasaki JA), Method of making a synthetic focused image hologram.
  40. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for full-resolution light-field capture and rendering.
  41. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for full-resolution light-field capture and rendering.
  42. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for full-resolution light-field capture and rendering.
  43. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for full-resolution light-field capture and rendering.
  44. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for full-resolution light-field capture and rendering.
  45. Georgiev, Todor G., Methods and apparatus for light-field imaging.
  46. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for reducing plenoptic camera artifacts.
  47. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for rich image capture with focused plenoptic cameras.
  48. Suzanne Wakelin ; Matthew W. Derstine ; James S. Wong, Microlens array with spatially varying optical property.
  49. Levoy, Marc S.; Ng, Yi-Ren; Horowitz, Mark A., Microscopy arrangements and approaches.
  50. Shum, Heung-Yeung; Chai, Jin-Xiang; Tong, Xin, Minimum sampling rate and minimum sampling curve for image-based rendering.
  51. Daily Michael J. (Thousand Oaks CA), Multi-image single sensor depth recovery system.
  52. Todor Georgiev, Multiple image morphing.
  53. Atwater, Harry A.; Zhou, Janet Qi; Gambin, Yann; Quake, Stephen R., Nonimaging concentrator lens arrays and microfabrication of the same.
  54. Glaser-Inbari Isaia (Tucson AZ), Optical imaging system.
  55. Adelson Edward H. (Cambridge MA), Optical ranging apparatus.
  56. Corle Timothy R. (Santa Clara County CA) Kino Gordon S. (Santa Clara County CA) Mansfield Scott M. (San Mateo County CA), Optical recording system employing a solid immersion lens.
  57. Okano Fumio,JPX ; Hoshino Haruo,JPX ; Arai Jun,JPX ; Mishina Tomoyuki,JPX, Optical three-dimensional imaging device which uses an integral photography technique.
  58. Georgiev, Todor G., Plenoptic camera.
  59. Georgiev, Todor G., Plenoptic camera with large depth of field.
  60. Minhas, Rajinderjeet Singh; Wu, Wencheng; Herloski, Robert P., Plenoptic system for recording images from sheets.
  61. Patton, David L.; Spoonhower, John P.; Bohan, Anne E.; Paz-Pujalt, Gustavo R., Solid immersion lens array and methods for producing a solid immersion lens array.
  62. Noto,Goro; Suda,Yasuo; Nagano,Akihiko, Solid-state image sensing element and its design support method, and image sensing device.
  63. Sekiguchi Nobutoshi,JPX, Spectroscopic apparatus and spectroscopic image recording apparatus.
  64. Inuiya Masafumi (Asaka JPX), Stereoscopic camera.
  65. Heung-Yeung Shum CN; Shing-Chow Chan HK, Techniques for spatial displacement estimation and multi-resolution operations on light fields.
  66. Okano,Fumio; Okui,Makoto; Arai,Jun; Kobayashi,Masaki, Three-dimensional image optical system.
  67. Dowski, Jr., Edward Raymond, Wavefront coding optics.

이 특허를 인용한 특허 (122)

  1. Venkataraman, Kartik; Duparre, Jacques; Mullis, Robert, Array camera architecture implementing quantum dot color filters.
  2. Duparre, Jacques, Array camera architecture implementing quantum film image sensors.
  3. Venkataraman, Kartik; Duparré, Jacques, Array camera configurations incorporating constituent array cameras and constituent cameras.
  4. Venkataraman, Kartik; Duparré, Jacques, Array camera configurations incorporating multiple constituent array cameras.
  5. Rodda, Errol Mark; Duparré, Jacques, Array camera modules incorporating independently aligned lens stacks.
  6. Rodda, Errol Mark; Duparré, Jacques, Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor.
  7. Venkataraman, Kartik; Gallagher, Paul; Jain, Ankit; Nisenzon, Semyon; Lelescu, Dan; Ciurea, Florian; Molina, Gabriel, Array cameras including an array camera module augmented with a separate camera.
  8. Rodda, Errol Mark; Duparré, Jacques, Array cameras incorporating independently aligned lens stacks.
  9. Duparre, Jacques; Lelescu, Dan; Venkataraman, Kartik, Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing.
  10. Duparre, Jacques; Lelescu, Dan; Venkataraman, Kartik, Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing.
  11. Venkataraman, Kartik; Gallagher, Paul; Jain, Ankit K.; Nisenzon, Semyon; Lelescu, Dan; Ciurea, Florian; Molina, Gabriel, Autofocus system for a conventional camera that uses depth information from an array camera.
  12. Georgiev, Todor G.; Lumsdaine, Andrew, Blended rendering of focused plenoptic camera data.
  13. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H.; Duparre, Jacques; Hu, Shane Ching-Feng, Camera arrays incorporating 3×3 imager configurations.
  14. Nisenzon, Semyon; Venkataraman, Kartik, Camera modules patterned with pi filter groups.
  15. Nisenzon, Semyon; Venkataraman, Kartik, Camera modules patterned with pi filter groups.
  16. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Capturing and processing of high dynamic range images using camera arrays.
  17. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Capturing and processing of images captured by arrays including polychromatic cameras.
  18. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma.
  19. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Capturing and processing of images captured by camera arrays including heterogeneous optics.
  20. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Capturing and processing of images captured by non-grid camera arrays.
  21. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H.; Duparre, Jacques; Hu, Shane Ching-Feng, Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras.
  22. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H.; Duparre, Jacques; Hu, Shane Ching-Feng, Capturing and processing of images including occlusions captured by camera arrays.
  23. Duparre, Jacques, Capturing and processing of images including occlusions captured by heterogeneous camera arrays.
  24. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H.; Duparre, Jacques; Hu, Shane Ching-Feng, Capturing and processing of images including occlusions focused on an image sensor by a lens stack array.
  25. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H.; Duparre, Jacques; Hu, Shane Ching-Feng, Capturing and processing of images including occlusions focused on an image sensor by a lens stack array.
  26. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H.; Duparre, Jacques; Hu, Shane Ching-Feng, Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view.
  27. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Capturing and processing of images using non-monolithic camera arrays.
  28. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Capturing and processing of near-IR images including occlusions using camera arrays incorporating near-IR light sources.
  29. Mullis, Robert H.; Lelescu, Dan; Venkataraman, Kartik, Extended color processing on pelican array cameras.
  30. Mullis, Robert; Lelescu, Dan; Venkataraman, Kartik, Extended color processing on pelican array cameras.
  31. Lelescu, Dan; Jain, Ankit K., Feature based high resolution motion estimation from low resolution images captured using an array source.
  32. Lumsdaine, Andrew; Willcock, Jeremiah; Zhou, Yuduo; Lin, Lili, Frequency domain processing techniques for plenoptic images.
  33. McMahon, Andrew Kenneth John, Imager array interfaces.
  34. Intwala, Chintan; Georgiev, Todor G., Managing artifacts in frequency domain processing of light-field images.
  35. Georgiev, Todor G.; Chunev, Georgi N., Methods and apparatus for calibrating focused plenoptic camera data.
  36. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for reducing plenoptic camera artifacts.
  37. Georgiev, Todor G.; Chunev, Georgi N., Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing.
  38. Georgiev, Todor G.; Chunev, Georgi N., Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data.
  39. Georgiev, Todor G.; Chunev, Georgi N.; Lumsdaine, Andrew, Methods and apparatus for super-resolution in integral photography.
  40. Rodda, Errol Mark; Duparré, Jacques, Methods of manufacturing array camera modules incorporating independently aligned lens stacks.
  41. Georgiev, Todor G.; Lumsdaine, Andrew, Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data.
  42. Duparre, Jacques, Optical arrangements for use with an array camera.
  43. Mullis, Robert, System and methods for calibration of an array camera.
  44. Mullis, Robert, System and methods for calibration of an array camera.
  45. Mullis, Robert, System and methods for calibration of an array camera.
  46. Mullis, Robert, System and methods for calibration of an array camera.
  47. Srikanth, Manohar; Ramamoorthi, Ravi; Venkataraman, Kartik; Chatterjee, Priyam, System and methods for depth regularization and semiautomatic interactive matting using RGB-D images.
  48. Ciurea, Florian; Venkataraman, Kartik; Molina, Gabriel; Lelescu, Dan, System and methods for measuring depth using an array camera employing a bayer filter.
  49. McMahon, Andrew Kenneth John; Venkataraman, Kartik; Mullis, Robert, Systems and method for performing depth based image editing.
  50. McMahon, Andrew Kenneth John, Systems and methods for array camera focal plane control.
  51. McMahon, Andrew Kenneth John, Systems and methods for array camera focal plane control.
  52. Nayar, Shree; Venkataraman, Kartik; Pain, Bedabrata; Lelescu, Dan, Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures.
  53. Lelescu, Dan; Venkataraman, Kartik, Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing.
  54. Lelescu, Dan; Venkataraman, Kartik, Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing.
  55. Duparré, Jacques, Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array.
  56. Venkataraman, Kartik; Ciurea, Florian, Systems and methods for correcting user identified artifacts in light field images.
  57. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for decoding image files containing depth maps stored as metadata.
  58. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for decoding image files containing depth maps stored as metadata.
  59. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for decoding light field image files having depth and confidence maps.
  60. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for decoding light field image files using a depth map.
  61. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for decoding refocusable light field image files.
  62. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for decoding structured light field image files.
  63. Yang, Samuel; Srikanth, Manohar; Lelescu, Dan; Venkataraman, Kartik, Systems and methods for depth-assisted perspective distortion correction.
  64. Duparre, Jacques; McMahon, Andrew Kenneth John; Lelescu, Dan; Venkataraman, Kartik; Molina, Gabriel, Systems and methods for detecting defective camera arrays and optic arrays.
  65. Duparre, Jacques; McMahon, Andrew Kenneth John; Lelescu, Dan; Venkataraman, Kartik; Molina, Gabriel, Systems and methods for detecting defective camera arrays and optic arrays.
  66. Ciurea, Florian; Lelescu, Dan; Chatterjee, Priyam, Systems and methods for dynamic calibration of array cameras.
  67. Lelescu, Dan; Molina, Gabriel; Venkataraman, Kartik, Systems and methods for dynamic refocusing of high resolution images generated using images captured by a plurality of imagers.
  68. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for encoding image files containing depth maps stored as metadata.
  69. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for encoding image files containing depth maps stored as metadata.
  70. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for encoding image files containing depth maps stored as metadata.
  71. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for encoding light field image files.
  72. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for encoding light field image files.
  73. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for encoding light field image files having a depth map.
  74. Venkataraman, Kartik; Nisenzon, Semyon; Lelescu, Dan, Systems and methods for encoding light field image files having depth and confidence maps.
  75. Ciurea, Florian; Venkataraman, Kartik; Molina, Gabriel; Lelescu, Dan, Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints.
  76. Ciurea, Florian; Venkataraman, Kartik; Molina, Gabriel; Lelescu, Dan, Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints.
  77. Venkataraman, Kartik; Duparré, Jacques, Systems and methods for estimating depth from projected texture using camera arrays.
  78. Venkataraman, Kartik; Gallagher, Paul; Jain, Ankit; Nisenzon, Semyon, Systems and methods for estimating depth using stereo array cameras.
  79. Venkataraman, Kartik; Lelescu, Dan; Molina, Gabriel, Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information.
  80. Venkataraman, Kartik; Lelescu, Dan; Molina, Gabriel, Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information.
  81. Ciurea, Florian; Venkataraman, Kartik; Molina, Gabriel; Lelescu, Dan, Systems and methods for generating depth maps and corresponding confidence maps indicating depth estimation reliability.
  82. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras.
  83. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras.
  84. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H.; Duparre, Jacques; Hu, Shane Ching-Feng, Systems and methods for generating depth maps using a set of images containing a baseline image.
  85. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Systems and methods for generating depth maps using images captured by camera arrays.
  86. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view.
  87. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Systems and methods for generating depth maps using light focused on an image sensor by a lens element array.
  88. Ciurea, Florian; Venkataraman, Kartik, Systems and methods for high dynamic range imaging using array cameras.
  89. McMahon, Andrew Kenneth John; Venkataraman, Kartik, Systems and methods for image data compression.
  90. Duparre, Jacques; McMahon, Andrew Kenneth John; Lelescu, Dan, Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors.
  91. Duparre, Jacques; McMahon, Andrew Kenneth John; Lelescu, Dan, Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors.
  92. Ciurea, Florian; Venkataraman, Kartik; Molina, Gabriel; Lelescu, Dan, Systems and methods for measuring depth based upon occlusion patterns in images.
  93. Ciurea, Florian; Venkataraman, Kartik; Molina, Gabriel; Lelescu, Dan, Systems and methods for measuring depth in the presence of occlusions using a subset of images.
  94. Ciurea, Florian; Venkataraman, Kartik; Molina, Gabriel; Lelescu, Dan, Systems and methods for measuring depth using an array of independently controllable cameras.
  95. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera.
  96. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera.
  97. Venkataraman, Kartik; Ciurea, Florian, Systems and methods for measuring scene information while capturing images using array cameras.
  98. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H.; Duparre, Jacques; Hu, Shane Ching-Feng, Systems and methods for normalizing image data captured by camera arrays.
  99. Venkataraman, Kartik; Huang, Yusong; Jain, Ankit K.; Chatterjee, Priyam, Systems and methods for performing high speed video capture and depth estimation using array cameras.
  100. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Systems and methods for performing post capture refocus using images captured by camera arrays.
  101. McMahon, Andrew Kenneth John; Lelescu, Dan; Ciurea, Florian, Systems and methods for photometric normalization in array cameras.
  102. McMahon, Andrew Kenneth John; Lelescu, Dan; Ciurea, Florian, Systems and methods for photometric normalization in array cameras.
  103. Molina, Gabriel, Systems and methods for reducing motion blur in images or video in ultra low light with array cameras.
  104. Molina, Gabriel, Systems and methods for reducing motion blur in images or video in ultra low light with array cameras.
  105. Venkataraman, Kartik; Gallagher, Paul; Jain, Ankit; Nisenzon, Semyon, Systems and methods for stereo imaging with camera arrays.
  106. Lelescu, Dan; Molina, Gabriel; Venkataraman, Kartik, Systems and methods for synthesizing high resolution images using a set of geometrically registered images.
  107. Lelescu, Dan; Duong, Thang, Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information.
  108. Lelescu, Dan; Molina, Gabriel; Venkataraman, Kartik, Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers.
  109. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H.; Duparre, Jacques; Hu, Shane Ching-Feng, Systems and methods for synthesizing higher resolution images using a set of images containing a baseline image.
  110. Venkataraman, Kartik; Jabbi, Amandeep S.; Mullis, Robert H., Systems and methods for synthesizing higher resolution images using images captured by camera arrays.
  111. Venkataraman, Kartik; Nisenzon, Semyon; Chatterjee, Priyam; Molina, Gabriel, Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies.
  112. Venkataraman, Kartik; Nisenzon, Semyon; Chatterjee, Priyam; Molina, Gabriel, Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies.
  113. McMahon, Andrew Kenneth John; Venkataraman, Kartik; Mullis, Robert, Systems and methods for the manipulation of captured light field image data.
  114. McMahon, Andrew Kenneth John, Systems and methods for transmitting and receiving array camera image data.
  115. McMahon, Andrew Kenneth John, Systems and methods for transmitting and receiving array camera image data.
  116. Venkataraman, Kartik CA; Gallagher, Paul; Lelescu, Dan; McMahon, Andrew Kenneth John; Duparre, Jacques; Pain, Bedabrata, Thin form factor computational array cameras and modular array cameras.
  117. Venkataraman, Kartik; Gallagher, Paul; Lelescu, Dan; McMahon, Andrew Kenneth John; Duparre, Jacques, Thin form factor computational array cameras and modular array cameras.
  118. Venkataraman, Kartik; Gallagher, Paul; Lelescu, Dan; McMahon, Andrew Kenneth John; Duparre, Jacques, Thin form factor computational array cameras and modular array cameras.
  119. Venkataraman, Kartik; Gallagher, Paul; Lelescu, Dan; McMahon, Andrew Kenneth John; Duparre, Jacques, Thin form factor computational array cameras and modular array cameras.
  120. Venkataraman, Kartik; Gallagher, Paul; Lelescu, Dan; McMahon, Andrew Kenneth John; Duparre, Jacques; Pain, Bedabrata, Thin form factor computational array cameras and modular array cameras.
  121. Georgiev, Todor G., Thin plenoptic cameras using microspheres.
  122. Georgiev, Todor G., Thin plenoptic cameras using solid immersion lenses.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로