$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Microelectromechanical systems (MEMS) resonators and related apparatus and methods 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • H01L-041/04
출원번호 US-0681904 (2012-11-20)
등록번호 US-8698376 (2014-04-15)
발명자 / 주소
  • Chen, David M.
  • Kuypers, Jan H.
  • Mohanty, Pritiraj
  • Schoepf, Klaus Juergen
  • Zolfagharkhani, Guiti
  • Goodelle, Jason
  • Rebel, Reimund
출원인 / 주소
  • Sand 9, Inc.
대리인 / 주소
    Wolf, Greenfield & Sacks, P.C.
인용정보 피인용 횟수 : 4  인용 특허 : 92

초록

Devices having piezoelectric material structures integrated with substrates are described. Fabrication techniques for forming such devices are also described. The fabrication may include bonding a piezoelectric material wafer to a substrate of a differing material. A structure, such as a resonator,

대표청구항

1. An apparatus, comprising: a first microelectromechanical systems (MEMS) wafer comprising a first MEMS device; anda second MEMS wafer comprising a second MEMS device,wherein the second MEMS wafer is configured to cap the first MEMS wafer, andwherein the first and second MEMS wafers are bonded toge

이 특허에 인용된 특허 (92)

  1. Kosinski,John A., Acceleration insensitive piezo-microresonator.
  2. Farrar, Paul A.; Geusic, Joseph E., Aligned buried structures formed by surface transformation of empty spaces in solid state materials.
  3. Farrar, Paul A.; Geusic, Joseph E., Alignment for buried structures formed by surface transformation of empty spaces in solid state materials.
  4. Ma, Qing; Berlin, Andy, Apparatus for adjusting the resonance frequency of a microelectromechanical (MEMS) resonator using tensile/compressive strain and applications thereof.
  5. Peczalski, Andrzej, Bulk resonator.
  6. Farrar,Paul A.; Geusic,Joseph, Buried conductor patterns formed by surface transformation of empty spaces in solid state materials.
  7. MacDonald Noel C. (Ithaca NY) Bertsch Fred M. (Ithaca NY) Shaw Kevin A. (Ithaca NY) Adams Scott G. (Ithaca NY), Capacitance based tunable micromechanical resonators.
  8. Ayazi,Farrokh; Pourkamali,Siavash; Ho,Gavin Kar Fai, Capacitive vertical silicon bulk acoustic resonator.
  9. Hoppe, Daniel J.; Hunt, Brian D.; Noca, Flavio; Xu, Jingming; Epp, Larry; Hoenk, Michael E., Carbon nanotube array RF filter.
  10. Ma, Qing; Cheng, Peng, Center-mass-reduced microbridge structures for ultra-high frequency MEM resonator.
  11. Piazza, Gianluca; Stephanou, Philip J.; Pisano, Albert P., Contour-mode piezoelectric micromechanical resonators.
  12. Piazza,Gianluca; Stephanou,Philip J.; Pisano,Albert P., Contour-mode piezoelectric micromechanical resonators.
  13. Mohanty,Pritiraj; Badzey,Robert L.; Gaidarzhy,Alexei; Zolfagharkhani,Guiti, Controllable nanomechanical memory element.
  14. Tsuru Yoshikazu (Nishinomiya JPX) Itamochi Sinji (Osaka JPX) Ohishi Junji (Sennan JPX) Shimamura Tetsuro (Kyoto JPX) Tahara Hiroshi (Osaka JPX), Crystal oscillator.
  15. Watanabe Shigemitsu,JPX ; Katoh Hiromi,JPX, Crystal oscillator with a temperature-compensating analog circuit.
  16. Kleinberg Leonard L. (Annapolis MD), Crystal oscillators using negative voltage gain, single pole response amplifiers.
  17. Nguyen Clark T. -C. ; McCorquodale Michael ; Wang Kun, Device including a micromechanical resonator having an operating frequency and method of extending same.
  18. Panasik, Carl M., Encapsulated packaging for thin-film resonators and thin-film resonator-based filters having a piezoelectric resonator between two acoustic reflectors.
  19. Gotoh Yoshihiro (Shiga JPX) Mikazuki Yoshinobu (Shiga JPX) Morisaki Yasutoshi (Shiga JPX), Flat packaged piezoelectric device using a glass-ceramic composite material comprising forsterite as ceramics.
  20. Partridge,Aaron; Lutz,Markus, Frequency and/or phase compensated microelectromechanical oscillator.
  21. Ruby,Richard C.; Pang,Wei, HBAR oscillator and method of manufacture.
  22. Chanchani,Rajen, Heterogeneously integrated microsystem-on-a-chip.
  23. Chan Tsiu Chiu ; DeSilva Melvin Joseph ; Sunkara Syama Sundar, Integrated released beam oscillator and associated methods.
  24. Bartley Eileen ; Cartwright Jeffrey, Low power compact heater for piezoelectric device.
  25. Aubin,Keith; Ilic,Bojan (Rob); Zalalutdinov,Maxim; Reichenbach,Robert B.; Parpia,Jeevak M.; Craighead,Harold G., MEMS oscillator drive.
  26. Duwel,Amy E.; Carter,David J.; Mescher,Mark J.; Varghese,Mathew; Antkowiak,Bernard M.; Weinberg,Marc S., MEMS piezoelectric longitudinal mode resonator.
  27. Bircumshaw, Brian L.; O'Reilly, Oliver M.; Pisano, Albert P., MEMS resonator and method of making same.
  28. Brown, Andrew R.; Hsu, Wan-Thai; Cioffi, Kenneth R.; Lacroix, Didier, MEMS resonator-based signal modulation.
  29. Cornett, Kenneth D.; Niu, Feng, MEMS resonators and method for manufacturing MEMS resonators.
  30. Motiee, Mehrnaz; Howe, Roger T.; Quevy, Emmanuel P.; Bernstein, David H., MEMS structure having a stress inverter temperature-compensated resonator member.
  31. Tada,Masahiro, MEMS type oscillator, process for fabricating the same, filter, and communication unit.
  32. LaFond,Peter H.; Yu,Lianzhong, MEMS vertical comb drive with improved vibration performance.
  33. Nguyen, Clark T.-C.; Hsu, Wan-Thai, Mechanical resonator device having phenomena-dependent electrical stiffness.
  34. Nguyen, Clark T. -C., Method and apparatus for filtering signals in a subsystem including a power amplifier utilizing a bank of vibrating micromechanical apparatus.
  35. Nguyen, Clark T.-C., Method and apparatus for filtering signals utilizing a vibrating micromechanical resonator.
  36. Nguyen, Clark T.-C., Method and apparatus for generating a signal having at least one desired output frequency utilizing a bank of vibrating micromechanical devices.
  37. Nguyen, Clark T. C., Method and apparatus for selecting at least one desired channel utilizing a bank of vibrating micromechanical apparatus.
  38. Clark T.-C. Nguyen, Method and apparatus for upconverting and filtering an information signal utilizing a vibrating micromechanical device.
  39. Nguyen, Clark T. -C., Method and subsystem for processing signals utilizing a plurality of vibrating micromechanical devices.
  40. Nguyen, Clark T. -C., Method and subsystem for processing signals utilizing a plurality of vibrating micromechanical devices.
  41. Nasiri,Steven S.; Flannery, Jr.,Anthony Francis; Lim,Martin, Method and system of releasing a MEMS structure.
  42. Lutz,Markus; Partridge,Aaron, Method for adjusting the frequency of a MEMS resonator.
  43. Sato,Tsutomu; Matsuo,Mie; Mizushima,Ichiro; Tsunashima,Yoshitaka; Takagi,Shinichi, Method for fabricating a localize SOI in bulk silicon substrate including changing first trenches formed in the substrate into unclosed empty space by applying heat treatment.
  44. Forster Fred K. ; Bardell Ron L. ; Sharma Nigel R., Method for making micropumps.
  45. Farrar, Paul A.; Geusic, Joseph E., Method of alignment for buried structures formed by surface transformation of empty spaces in solid state materials.
  46. Farrar, Paul A.; Geusic, Joseph E., Method of alignment for buried structures formed by surface transformation of empty spaces in solid state materials.
  47. Nasiri,Steven S.; Flannery, Jr.,Anthony Francis, Method of fabrication of a AL/GE bonding in a wafer packaging environment and a product produced therefrom.
  48. Paul A. Farrar ; Joseph Geusic, Method of forming buried conductor patterns by surface transformation of empty spaces in solid state materials.
  49. Sato,Tsutomu; Matsuo,Mie; Mizushima,Ichiro; Tsunashima,Yoshitaka; Takagi,Shinichi, Method of making empty space in silicon.
  50. Gaidarzhy, Alexei; Schoepf, Klaus Juergen; Mohanty, Pritiraj, Methods and devices for compensating a signal using resonators.
  51. Lin Liwei (Berkeley CA) Nguyen Clark T. (Berkeley CA) Howe Roger T. (Lafayette CA) Pisano Albert P. (Berkeley CA), Microelectromechanical signal processor fabrication.
  52. Lin Liwei (Berkeley CA) Nguyen Clark T. (Berkeley CA) Howe Roger T. (Lafayette CA) Pigano Albert P. (Berkeley CA), Microelectromechanical signal processors.
  53. Lin Liwei (Berkeley CA) Nguyen Clark T.-C. (Berkeley CA) Howe Roger T. (Lafayette CA) Pisano Albert P. (Berkeley CA), Microelectromechanical signal processors.
  54. Kihara,Ryuji; Nakajima,Takuya; Furuhata,Makoto, Micromechanical electrostatic resonator.
  55. Hsu, Wan-Thai; Nguyen, Clark T. C., Micromechanical resonator device.
  56. Clark, John R.; Nguyen, Clark T.-C., Micromechanical resonator device and micromechanical device utilizing same.
  57. Hsu, Wan-Thai, Micromechanical resonator having short support beams.
  58. Nguyen Clark Tu-Cuong ; Gutnik Vadim ; Howe Roger T., Mixing, modulation and demodulation via electromechanical resonators.
  59. Wong, Ark-Chew; Nguyen, Clark T.-C., Module and method of making same.
  60. Dunn William C. (Mesa AZ) Liaw H. Ming (Scottsdale AZ) Ristic Ljubisa (Phoenix AZ) Roop Raymond M. (Scottsdale AZ), Monolithic circuit with integrated bulk structure resonator.
  61. Photiadis, Douglas; Sarkissian, Angie, Monolithic vibration isolation and an ultra-high Q mechanical resonator.
  62. Adams Scott G. ; Wang Yongmei Cindy ; Macdonald Noel C. ; Thorp James S., Multistable tunable micromechanical resonators.
  63. Dumitrescu,Gabriel Gheorghe; Opris,Jon E., Oscillator with variable reference.
  64. Fujii,Hidetoshi; Takeuchi,Masaki, Piezoelectric device.
  65. Satoh Yuki,JPX ; Ishizaki Toshio,JPX ; Sakaue Tsuyoshi,JPX ; Hashimoto Koji,JPX ; Yamada Tohru,JPX ; Uwano Tomoki,JPX, Piezoelectric device and a package.
  66. Ayazi, Farrokh; Piazza, Gianluca; Abdolvand, Reza; Ho, Gavin Kar-Fai; Humad, Shweta, Piezoelectric on semiconductor-on-insulator microelectromechanical resonators.
  67. Higuchi, Takamitsu; Kato, Juri; Ono, Yasuhiro, Piezoelectric oscillator and method for manufacturing the same.
  68. Kikushima Masayuki (Suwa JPX), Piezoelectric oscillator formed in resin package containing, IC chip and piezoelectric oscillator element.
  69. Nguyen Clark T.-C. (Berkeley CA) Howe Roger T. (Lafayette CA), Q-controlled microresonators and tunable electronic filters using such resonators.
  70. Nguyen Clark Tu-Cuong ; Howe Roger T., Q-controlled microresonators and tunable electronic filters using such resonators.
  71. Niu, Feng; Chiou, Wayne W., Reduced size, low loss MEMS torsional hinges and MEMS resonators employing such hinges.
  72. Mattila,Tomi; Oja,Aarne; Jaakkola,Olli; Seppā,Heikki, Reference oscillator frequency stabilization.
  73. Pedersen, David Raymond; Partridge, Aaron; Juneau, Thor, Resonator electrode shields.
  74. Bradley, Paul D.; Lee, Donald; Figueredo, Domingo A., Resonator with seed layer.
  75. Sato,Tsutomu; Matsuo,Mie; Mizushima,Ichiro; Tsunashima,Yoshitaka; Takagi,Shinichi, Semiconductor substrate having pillars within a closed empty space.
  76. Hagelin, Paul Merritt; Pedersen, David Raymond, Serrated MEMS resonators.
  77. Mollov Ivan Petrov (Parkview IA) Havens Robert Eugene (Eldridge IA), Temperature compensated clock.
  78. Ishizaki Toshio (Kobe JPX) Satoh Yuki (Neyagawa JPX) Hashimoto Koji (Kobe JPX), Temperature compensated crystal oscillator.
  79. Quevy,Emmanuel P.; Howe,Roger T., Temperature compensated oscillator including MEMS resonator for frequency control.
  80. Lutz,Markus; Partridge,Aaron, Temperature compensation for silicon MEMS resonator.
  81. Lutz,Markus; Partridge,Aaron, Temperature compensation for silicon MEMS resonator.
  82. Giousouf, Metin; K?ck, Heinz; Platz, Rainer, Temperature compensation mechanism for a micromechanical ring resonator.
  83. Lutz,Markus; Partridge,Aaron, Temperature controlled MEMS resonator and method for controlling resonator frequency.
  84. Giousouf, Metin; Kück, Heinz; Platz, Rainer, Time base comprising an integrated micromechanical tuning fork resonator.
  85. Clark, William W.; Wang, Qing-Ming, Tunable piezoelectric micro-mechanical resonator.
  86. Ruby Richard C. (Menlo Park CA) Merchant Paul P. (Belmont CA), Tunable thin film acoustic resonators and method for making the same.
  87. Chang Mau Chung F. ; Marcy ; 5.sup.th Henry O. ; Pedrotti Kenneth D. ; Pehlke David R. ; Seabury Charles W. ; Yao Jun J. ; Park Sangtae ; Tham J. L. Julian ; Mehrotra Deepak ; Bartlett James L., Tunable-trimmable micro electro mechanical system (MEMS) capacitor.
  88. Feng, Xiao-Li; White, Christopher J.; Hajimiri, Seyed Ali; Roukes, Michael L., Ultra-high frequency self-sustaining oscillators, coupled oscillators, voltage-controlled oscillators, and oscillator arrays based on vibrating nanoelectromechanical resonators.
  89. Nasiri,Steven S.; Flannery, Jr.,Anthony Francis, Vertical integration of a MEMS structure with electronics in a hermetically sealed cavity.
  90. Nasiri,Steven S.; Flannery, Jr.,Anthony Francis, Vertically integrated MEMS structure with electronics in a hermetically sealed cavity.
  91. Seeger, Joseph; Nasiri, Steven S.; Castro, Alexander, X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging.
  92. Herb, William R.; Burns, David W.; Youngner, Daniel W., Zero TCF thin film resonator.

이 특허를 인용한 특허 (4)

  1. Burak, Dariusz; Grannen, Kevin J.; Choy, John, Bulk acoustic wave resonator with piezoelectric layer comprising lithium niobate or lithium tantalate.
  2. Martin, Tom A., SAW device and method for post-seal frequency trimming.
  3. Abraham, Margaret H.; Taylor, David P., Systems and methods for depositing materials on either side of a freestanding film using laser-assisted chemical vapor deposition (LA-CVD), and structures formed using same.
  4. Taylor, David P.; Abraham, Margaret H., Systems and methods for depositing materials on either side of a freestanding film using selective thermally-assisted chemical vapor deposition (STA-CVD), and structures formed using same.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로