대표
청구항
▼
1. An increased efficiency high-capacity swing adsorption process comprising: providing a feedstream containing a first concentration of at least one desired product gas and a first concentration of at least one contaminant gas, wherein the feedstream is provided at a rate of at least 100 million standard cubic feet per day (MSCFD);contacting the feedstream with an adsorption module having a feed end, a product end, and or e or more adsorption beds comprising an adsorption material under conditions sufficient for the adsorption material to selectively ad...
1. An increased efficiency high-capacity swing adsorption process comprising: providing a feedstream containing a first concentration of at least one desired product gas and a first concentration of at least one contaminant gas, wherein the feedstream is provided at a rate of at least 100 million standard cubic feet per day (MSCFD);contacting the feedstream with an adsorption module having a feed end, a product end, and or e or more adsorption beds comprising an adsorption material under conditions sufficient for the adsorption material to selectively adsorb the at least one desired product gas in comparison to the at least one contaminant gas, so as to form a contaminant effluent having a second concentration of the at least one desired product gas that is lower than the first concentration in the feedstream and having a second concentration of the at least one contaminant gas that is higher than the first concentration in the feedstream; andselectively desorbing the at least one desired product gas from the adsorption material, so as to form a product effluent having a third concentration of the at least one desired product gas that is at least 20 wt % higher than the first concentration in the feedstream and having a second concentration of the at least one contaminant gas that is at least 20 wt % lower than the first concentration in the feedstream,wherein the adsorption module contains rotary valves both on the feed end and on the product end of the adsorption bed(s) and a rotational member defining a central rotational axis; wherein the adsorption bed(s) is(are) oriented circumferentially to the rotational member axially surrounding the rotational axis; and wherein one or more of the following are true: the adsorption bed(s) thus (each) comprise an inner wall closest to the rotational axis and an outer wall furthest from the rotational axis, such that the outer wall defines a plane that is non-parallel with a plane defined by the inner wall, such that an intersection angle defined at the convergent interface of the planes is between 10° and 60°;the adsorption bed(s) thus (each) comprise a feed end cross-sectional area and a product end cross-sectional area, such that a ratio of the feed end cross-sectional area to the product end cross-sectional area is from 12 to 10; andthe feed end rotary valve has a diameter and the product end rotary valve has a diameter, such that the ratio of the feed end rotary valve diameter to the product end rotary valve diameter is from 1.1 to 2.5. 2. The process of claim 1, wherein the feedstream comprises natural gas, the at least one desired product gas comprises CH4, and the at least one contaminant gas comprises CO2, H2S, NOx, SOx, or a combination thereof. 3. The process of claim 1, wherein the feedstream comprises a refinery flue gas, the at least one desired product gas comprises CO2, and the at least one contaminant gas comprises N2, H2S, NOx, SOx, or a combination thereof. 4. The process of claim 1, wherein the feedstream comprises a hydrocarbon conversion product stream or a chemical plant product or waste stream, the at least one desired product gas comprises an olefin selected from the group consisting of ethylene, propylene, 1-butene, 2-butene, isobutylene, and combinations thereof, and the at least one contaminant gas comprises a saturated hydrocarbon selected from the group consisting of methane, ethane, propane, butane, cyclobutane, pentane, cyclopentane, and combinations thereof. 5. The process of claim 1, wherein the adsorption bed(s) thus (each) comprise an wall closest to the rotational axis and an outer wall furthest from the rotational axis, such that the outer wall defines a plane that is non-parallel with a plane defined by the inner wall, such that an intersection angle defined at the convergent interface of the planes is between 30° and 45°. 6. The process of claim 1, wherein the adsorption bed(s) thus (each) comprise a feed end cross-sectional area and a product end cross-sectional area, such that a ratio of the feed end cross-sectional area to the product end cross-sectional area is from 1.7 to 5. 7. The process of claim 1, wherein the feed end rotary valve has a diameter and the product end rotary valve has a diameter, such that the ratio of the feed end rotary valve diameter to the product end rotary valve diameter is from 1.4 to 2. 8. The process of claim 1, wherein the feedstream is provided at a rate of at least 200 MSCFD. 9. The process of claim 1, wherein the swing adsorption process comprises PSA, TSA, PPSA, PTSA, RC-PSA, RC-TSA, RC-PPSA, or RC-PTSA. 10. The process of claim 1, further comprising recycling at least a portion of the contaminant effluent from the product end to the feed end of the at least one adsorption module in order to be combined with the feedstream. 11. The process of claim 1, wherein the at least one product effluent is optionally additionally treated to further increase the at least one desired product gas concentration, and then either transported to a remote site or used on site in a further process. 12. An increased efficiency high-capacity swing adsorption process comprising: providing a feedstream containing a first concentration of at least one desired product gas and a first concentration of at least one contaminant gas, wherein the feedstream is provided at a rate of at least 100 million standard cubic feet per day (MSCFD);contacting the feedstream with an adsorption module having a feed end, a product end, and one or more adsorption beds comprising an adsorption material under conditions sufficient for the adsorption material to selectively adsorb the at least one contaminant gas in comparison to the at least one desired product gas, so as to form a product effluent haying a second concentration of the at least one desired product gas that is at least 15 wt % higher than the first concentration in the feedstream and having a second concentration of the at least contaminant gas that is at least 15 wt % lower than the first concentration in the feedstream; andselectively desorbing the at least one contaminant gas from the adsorption material, so as to form a product effluent haying a third concentration of the at least one desired product gas that is lower than the first concentration in the feedstream and haying a second concentration of the at least one contaminant gas that is higher than the first concentration in the feedstream,wherein the adsorption module contains rotary valves both on the feed end and on the product end of the adsorption bed(s) and a rotational member defining a central rotational axis; wherein the adsorption bed(s) is(are) oriented circumferentially to the rotational member axially surrounding the rotational axis; and wherein one or more of the following are true: the adsorption bed(s) thus (each) comprise an inner wall closest to the rotational axis and an outer wall furthest from the rotational axis, such that the outer wall defines a plane that is non-parallel with a plane defined by the inner wall, such that an intersection angle defined at the convergent interface of the planes is between 10° and 60°;the adsorption bed(s) thus (each) comprise a feed end cross-sectional area and a product end cross-sectional area, such that a ratio of the feed end cross-sectional area to the product end cross-sectional area is from 1.2 to 10; andthe feed end rotary valve has a diameter and the product end rotary salve has a diameter, such that the ratio of the feed end rotary valve diameter to the product end rotary valve diameter is from 1.1 to 2.5. 13. The process of claim 12, wherein the feedstream comprises air, the at least one desired product gas comprises N2, and the at least one contaminant gas comprises O2. 14. The process of claim 12, wherein the feedstream comprises a hydrocarbon conversion product stream or a chemical plant product or waste stream, the at least one desired product gas comprises an olefin selected from the group consisting of ethylene, propylene, 1-butene, 2-butene, isobutylene, and combinations thereof, and the at least one contaminant gas comprises (a) a diolefin selected from the group consisting of 1,3-butadiene, 1,3-pentadiene, 1,4-pentadiene, and combinations thereof, (b) an optionally heteroatom-containing hydrocarbon material having a triple bond, such as selected from the group consisting of acetylene and/or acrylonitrile, or a combination of (a) and (b). 15. The process of claim 12, wherein the adsorption bed(s) thus (each) comprise an inner wall closest to the rotational axis and an outer wall furthest from the rotational axis, such that the outer wall defines a plane that is non-parallel with a plane defined by the inner wall, such that an intersection angle defined at the convergent interface of the planes is between 30° and 45°. 16. The process of claim 12, wherein the adsorption bed(s) thus (each) comprise a feed end cross-sectional area and a product end cross-sectional area, such that a ratio of the feed end cross-sectional area to the product end cross-sectional area is from 1.7 to 5. 17. The process of claim 12, wherein the feed end rotary valve has a diameter and the product end rotary valve has a diameter, such that the ratio of the feed end rotary valve diameter to the product end rotary valve diameter is from 1.4 to 2. 18. The process of claim 12, wherein the feedstream is provided at a rate of at least 200 MSCFD. 19. The process of claim 12, wherein the swing adsorption process comprises PSA, TSA, PPSA, PTSA, RC-PSA, RC-TSA, RC-PPSA, or RC-PTSA. 20. The process of claim 12, further comprising recycling at least a portion of the product effluent from the product end to the feed end of the at least one adsorption module in order to be combined with the feedstream. 21. The process of claim 12, wherein the at least one contaminant effluent is optionally additionally treated to further increase the at least one contaminant gas concentration, and then either transported to a remote site or used on site in a further process.