대표
청구항
▼
1. A motor, comprising a stator, an internal rotor and an external rotor, wherein the internal rotor is embedded into the external rotor, with a cavity provided between the internal and external rotors; the cavity is filled with magnetic phase-change material; the stator is provided outside of the external rotor, while the internal rotor is connected with output shaft of the motor; after switching on the power, the external rotor is driven by a rotating magnetic field generated by the stator to rotate at first, and then the internal rotor is driven by a ...
1. A motor, comprising a stator, an internal rotor and an external rotor, wherein the internal rotor is embedded into the external rotor, with a cavity provided between the internal and external rotors; the cavity is filled with magnetic phase-change material; the stator is provided outside of the external rotor, while the internal rotor is connected with output shaft of the motor; after switching on the power, the external rotor is driven by a rotating magnetic field generated by the stator to rotate at first, and then the internal rotor is driven by a rotating magnetic field generated by the external rotor to rotate; as a result, the motor shaft is driven to rotate and output kinetic energy, and the internal rotor generates induced electromagnetic field while rotating; the internal and external rotors automatically regulate magnetic phase and form a closed magnetic circuit, because the magnetic phase-change material is filled in the cavity between the internal and external rotors, when the motor is running after switching on the power, a flexible driving force is generated from the external rotor to the internal rotor, so as to realize flexible output of power of the motor shaft. 2. The motor according to claim 1, wherein specific structure of the motor is as follows: inserting and fixing the motor shaft into the internal rotor to form an internal rotor assembly; arranging the bearing and the framework oil seal into the rotor bearing end plate to form a rotor bearing end plate assembly; inserting the internal rotor assembly into the external rotor, two ends of which are provided with the rotor bearing end plate assemblies; filling the phase-change magnetic material into the gap between the internal and external rotors to form a rotor component;embedding the wound stator coil into the stator iron core to form a stator component;arranging the bearing into the front end cover and the rear end cover to form a motor enclosure end cover component;connecting the shielding signal cable with the grating encoder and the low voltage wiring board to form a sensor component;arranging the stator component into the motor enclosure, inserting the shielding signal cable into the motor enclosure through the stator iron core trunking, inserting the rotor component into the stator component, inserting the motor shaft into the motor enclosure end cover component in terms of the front and rear position and fixing it on two end surfaces of the motor enclosure; inserting the grating encoder through the motor shaft and fixing on the rear end cover of motor, arranging the low voltage wiring board inside of the junction box; connecting the grating encoder and the low voltage wiring board with the shielding signal cable, and arranging and fixing the fan blade into rear part of the motor shaft; fixedly arranging the rear fan cover on the rear end cover of the motor, and fixing the junction box cover, thus to form the complete machine product. 3. The motor according to claim 1, wherein the phase-change magnetic material is used as kinetic flexible transmission medium that is filled in the gap between the internal and external rotors. 4. The motor according to claim 1, wherein the internal rotor component and external rotor are connected by the bearing. 5. The motor according to claim 1, wherein the external rotor is a squirrel-cage type rotor or a permanent magnetic rotor, and the internal rotor is the squirrel-cage type rotor. 6. The motor according to claim 1, wherein the motor has starting protection and overcurrent protection, at the conditions of double rated power, 55 Kp/cm2 shearing stress of phase-change material, 30 N/m locked-rotor torque, external rotor idling and internal rotor stalling, the starting peak value and overcurrent are both lower than double rated motor current. 7. A motor, comprising a rotor and a stator, wherein the motor adopts two groups of rotor-stator structures that are arranged coaxially; one group is a driving rotor-stator structure, including a primary stator and a primary rotor; the primary rotor is formed by embedding a primary inner rotor into a primary outer rotor, phase-change magnetic materials are filled into a cavity between the primary inner rotor and the primary outer rotor, and the primary inner rotor is connected with an output shaft of the motor; after switching on the power of the primary stator coil, the alternating current motor generates asynchronous rotating magnetic field of the primary stator, the primary outer rotor and the primary inner rotor for two times; because liquid phase-change magnetic materials are filled between the inner and outer rotors, the primary outer rotor generates flexible driving force to the primary internal rotor and the motor shaft; the other group is a controlling stator structure comprising a secondary stator and a secondary rotor, and the secondary rotor is arranged coaxially with the primary inner rotor. 8. The motor according to claim 7, wherein specific structure of the motor is as follows: inserting and fixing the motor shaft into the primary internal rotor, embedding the primary inner rotor into the primary outer rotor, arranging a rotor bearing and a frame oil seal into a rotor end cover, fixedly arranging the rotor end cover on two ends of the primary outer rotor, filling the phase-change magnetic materials into the gap between the inner and outer rotors, arranging the motor shaft through the secondary rotor, to form a rotor component;embedding the wound primary and secondary stator coils into the primary and secondary stator iron cores to form a stator component;arranging a high voltage wiring pile, a driving circuit board and an integrated control panel to form a control component;arranging the bearing into the front end cover and the rear end cover to form a motor enclosure end cover component;connecting the shielding signal cable with wiring terminals of the grating encoder and the low voltage circuit board to form a sensor component;arranging the stator component into the motor enclosure, arranging the control component into the junction box, inserting the shielding signal cable through the rear end cover of motor and the enclosure trunking to connect a low voltage wiring terminal; inserting the rotor component into the stator component, with the primary and secondary stators being in accordance with the primary and secondary rotors; connecting the primary stator coil with the high voltage wiring pile and connecting the secondary coil with the driving circuit board; inserting the motor shaft into the motor enclosure end cover component in terms of the front and rear position and fixing it on two end surfaces of the motor enclosure; inserting the grating encoder through the motor shaft and fixing on the rear end cover of motor; connecting the grating encoder with the shielding signal cable, and arranging and fixing the fan blade into rear part of the motor shaft; fixedly arranging the rear fan cover on the rear end cover of the motor, and fixing the junction box cover, thus to finish arranging the complete machine product. 9. The motor according to claim 7, wherein the controlling stator and rotor structure is comprised of the secondary stator and the secondary rotor; when switching on the power of the secondary stator coil, the secondary rotor generates rotating torque with same direction of the primary rotor; if rotating frequency of the secondary rotor is higher than that of the primary rotor, it generates acceleration to the motor shaft; if rotating frequency of the secondary rotor is lower than that of the primary rotor, it generates deceleration to the motor shaft; after switching on the power of the secondary stator coil, changing driving current of coil will accordingly change output torque of the secondary rotor and the motor shaft; when switching on the power of the secondary stator coil, it generates stable S->N magnetic field with permanent magnet; at this time, if switching off the power of the primary stator coil, the motor enters into braking mode. 10. The motor according to claim 7, wherein the primary rotor is an embedded double-rotor structure comprising a primary external rotor and a primary internal rotor; the primary internal rotor is arranged inside of the primary external rotor; two ends of the primary rotor are provided with rotor end covers on which the frame oil seal and bearing are provided; the primary internal rotor, the motor shaft and the primary external rotor are connected with bearing, and the cavity between the two rotors is closed. 11. The motor according to claim 7, wherein the primary rotor is a squirrel-cage type external rotor or permanent magnetic external rotor, the internal rotor is a squirrel-cage type internal rotor, and the secondary rotor adopts the permanent magnetic structure. 12. A motor, comprising a stator, an internal rotor and an external rotor, wherein the internal rotor is embedded into the external rotor, with a cavity or an air gap provided between the internal and external rotors; the internal rotors adopts the conductive sleeve type internal rotor, the phase-change magnetic material is filled in the cavity of the conductive sleeve type internal rotor, the cavity is filled with magnetic phase-change material; the stator is provided outside of the external rotor, while the internal rotor is connected with output shaft of the motor; after switching on the power, the external rotor is driven by a rotating magnetic field generated by the stator to rotate at first, and then the internal rotor is driven by a rotating magnetic field generated by the external rotor to rotate; as a result, the motor shaft is driven to rotate and output kinetic energy, and the internal rotor generates induced electromagnetic field while rotating; the internal and external rotors automatically regulate magnetic phase and form a closed magnetic circuit, because the magnetic phase-change material is filled in the cavity of the conductive sleeve type internal rotor, when the motor is running after switching on the power, a flexible driving force is generated from the external rotor to the internal rotor, so as to realize flexible output of power of the motor shaft. 13. A motor, comprising a rotor and a stator, wherein the motor adopts two groups of rotor-stator structures that are arranged coaxially; one group is a driving rotor-stator structure, including a primary stator and a primary rotor; the primary rotor is formed by embedding a primary inner rotor into a primary outer rotor, and a cavity or an air gap provided inside the primary inner rotor or between the primary inner rotor and the primary outer rotor, the primary inner rotor adopts the conductive sleeve type internal rotor, phase-change magnetic materials are filled in the conductive sleeve type internal rotor, and the primary inner rotor is connected with an output shaft of the motor; after switching on the power of the primary stator coil, the alternating current motor generates asynchronous rotating magnetic field of the primary stator, the primary outer rotor and the primary inner rotor for two times; because liquid phase-change magnetic materials is filled in the conductive sleeve type internal rotor, the primary outer rotor generates flexible driving force to the primary internal rotor and the motor shaft; the other group is a controlling stator structure comprising a secondary stator and a secondary rotor, and the secondary rotor is arranged coaxially with the primary inner rotor.