대표
청구항
▼
1. A cladded aluminum-alloy material having an aluminum alloy core material, an intermediate layer material clad on one surface of the core material and a brazing filler metal clad on the intermediate layer material surface which is not at the core material side, wherein the core material comprises an aluminum alloy comprising 0.05 to 1.50 mass % Si, 0.05 to 2.00 mass % Fe, 0.5 to 2.0 mass % Mn and a balance of Al and unavoidable impurities, either one or both of the intermediate layer material and the brazing filler metal comprises 0.05 to 2.50 mass % M...
1. A cladded aluminum-alloy material having an aluminum alloy core material, an intermediate layer material clad on one surface of the core material and a brazing filler metal clad on the intermediate layer material surface which is not at the core material side, wherein the core material comprises an aluminum alloy comprising 0.05 to 1.50 mass % Si, 0.05 to 2.00 mass % Fe, 0.5 to 2.0 mass % Mn and a balance of Al and unavoidable impurities, either one or both of the intermediate layer material and the brazing filler metal comprises 0.05 to 2.50 mass % Mg, the intermediate layer material comprises an aluminum alloy further comprising 0.5 to 8.0 mass % Zn, 0.05 to 1.50 mass % Si, 0.05 to 2.00 mass % Fe and a balance of Al and unavoidable impurities, and the brazing filler metal comprises an aluminum alloy further comprising 2.5 to 13.0 mass % Si, 0.05 to 1.20 mass % Fe and a balance of Al and unavoidable impurities,a crystal grain size of the intermediate layer material before brazing heating is 60 μm or more, and in a cross section of the core material in a rolling direction before brazing heating, when R1 (μm) represents the crystal grain size in a plate thickness direction, and R2 (μm) represents the crystal grain size in the rolling direction, R1/R2 is 0.30 or less. 2. The cladded aluminum-alloy material according to claim 1, wherein the core material comprises the aluminum alloy further comprising one or, two or more selected from 0.05 to 3.50 mass % Mg, 0.05 to 1.50 mass % Cu, 0.05 to 0.30 mass % Ti, 0.05 to 0.30 mass % Zr, 0.05 to 0.30 mass % Cr and 0.05 to 0.30 mass % V. 3. The cladded aluminum-alloy material according to claim 1, wherein the intermediate layer material comprises the aluminum alloy further comprising one or, two or more selected from 0.05 to 2.00 mass % Ni, 0.05 to 2.00 mass % Mn, 0.05 to 0.30 mass % Ti, 0.05 to 0.30 mass % Zr, 0.05 to 0.30 mass % Cr and 0.05 to 0.30 mass % V. 4. The cladded aluminum-alloy material according to claim 1, wherein the brazing filler metal comprises the aluminum alloy further comprising one or, two or more selected from 0.5 to 8.0 mass % Zn, 0.05 to 1.50 mass % Cu, 0.05 to 2.00 mass % Mn, 0.05 to 0.30 mass % Ti, 0.05 to 0.30 mass % Zr, 0.05 to 0.30 mass % Cr and 0.05 to 0.30 mass % V. 5. The cladded aluminum-alloy material according to claim 1, wherein the brazing filler metal comprises the aluminum alloy further comprising one or two selected from 0.001 to 0.050 mass % Na and 0.001 to 0.050 mass % Sr. 6. A method for producing the cladded aluminum-alloy material according to claim 1, comprising: a step of casting the aluminum alloys for the core material, the intermediate layer material and the brazing filler metal, respectively,a hot rolling step of hot rolling the cast intermediate layer material ingot and the cast brazing filler metal ingot to predetermined thicknesses, respectively,a cladding step of cladding the intermediate layer material rolled to the predetermined thickness on one surface of the core material ingot, and cladding the brazing filler metal rolled to the predetermined thickness on the intermediate layer material surface which is not at the core material side and thus obtaining a clad material,a hot clad rolling step of hot rolling the clad material, a cold rolling step of cold rolling the hot-clad-rolled clad material, andone or more annealing steps of annealing the clad material either during or after the cold rolling step or both during and after the cold rolling step,wherein in the hot clad rolling step, the rolling start temperature is 400 to 520° C., and the number of rolling passes each with a rolling reduction of 30% or more is restricted to five or less while the temperature of the clad material is 200 to 400° C., and the clad material is held at 200 to 560° C. for 1 to 10 hours in the annealing steps. 7. A cladded aluminum-alloy material having an aluminum alloy core material, an intermediate layer material clad on one surface of the core material, a brazing filler metal clad on the intermediate layer material surface which is not at the core material side, and a brazing filler metal clad on the other surface of the core material, wherein the core material comprises an aluminum alloy comprising 0.05 to 1.50 mass % Si, 0.05 to 2.00 mass % Fe, 0.5 to 2.0 mass % Mn and a balance of Al and unavoidable impurities, either one or both of the intermediate layer material and the brazing filler metal clad on the intermediate layer material surface which is not at the core material side comprises 0.05 to 2.50 mass % Mg, the intermediate layer material comprises an aluminum alloy further comprising 0.5 to 8.0 mass % Zn, 0.05 to 1.50 mass % Si, 0.05 to 2.00 mass % Fe and a balance of Al and unavoidable impurities, the brazing filler metal clad on the intermediate layer material surface which is not at the core material side comprises an aluminum alloy further comprising 2.5 to 13.0 mass % Si, 0.05 to 1.20 mass % Fe and a balance of Al and unavoidable impurities, the brazing filler metal clad on the other surface of the core material comprises an aluminum alloy comprising 2.5 to 13.0 mass % Si, 0.05 to 1.20 mass % Fe, 0.05 to 2.50 mass % Mg and a balance of Al and unavoidable impurities,a crystal grain size of the intermediate layer material before brazing heating is 60 μm or more, and in a cross section of the core material in a rolling direction before brazing heating, when R1 (μm) represents the crystal grain size in a plate thickness direction, and R2 (μm) represents the crystal grain size in the rolling direction, R1/R2 is 0.30 or less. 8. The cladded aluminum-alloy material according to claim 7, wherein the core material comprises the aluminum alloy further comprising one or, two or more selected from 0.05 to 3.50 mass % Mg, 0.05 to 1.50 mass % Cu, 0.05 to 0.30 mass % Ti, 0.05 to 0.30 mass % Zr, 0.05 to 0.30 mass % Cr and 0.05 to 0.30 mass % V. 9. The cladded aluminum-alloy material according to claim 7, wherein the intermediate layer material comprises the aluminum alloy further comprising one or, two or more selected from 0.05 to 2.00 mass % Ni, 0.05 to 2.00 mass % Mn, 0.05 to 0.30 mass % Ti, 0.05 to 0.30 mass % Zr, 0.05 to 0.30 mass % Cr and 0.05 to 0.30 mass % V. 10. The cladded aluminum-alloy material according to claim 7, wherein the brazing filler metal clad on the intermediate layer material surface which is not at the core material side comprises the aluminum alloy further comprising one or, two or more selected from 0.5 to 8.0 mass % Zn, 0.05 to 1.50 mass % Cu, 0.05 to 2.00 mass % Mn, 0.05 to 0.30 mass % Ti, 0.05 to 0.30 mass % Zr, 0.05 to 0.30 mass % Cr and 0.05 to 0.30 mass % V. 11. The cladded aluminum-alloy material according to claim 7, wherein the brazing filler metal clad on the intermediate layer material surface which is not at the core material side comprises the aluminum alloy further comprising one or two selected from 0.001 to 0.050 mass % Na and 0.001 to 0.050 mass % Sr. 12. The cladded aluminum-alloy material according to claim 7, wherein the brazing filler metal clad on the other surface of the core material comprises the aluminum alloy further comprising one or, two or more selected from 0.5 to 8.0 mass % Zn, 0.05 to 1.50 mass % Cu, 0.05 to 2.00 mass % Mn, 0.05 to 0.30 mass % Ti, 0.05 to 0.30 mass % Zr, 0.05 to 0.30 mass % Cr and 0.05 to 0.30 mass % V. 13. The cladded aluminum-alloy material according to claim 7, wherein the brazing filler metal clad on the other surface of the core material comprises the aluminum alloy further comprising one or two selected from 0.001 to 0.050 mass % Na and 0.001 to 0.050 mass % Sr. 14. A method for producing the cladded aluminum-alloy material according to claim 7, comprising: a step of casting the aluminum alloys for the core material, the intermediate layer material, the brazing filler metal clad on the intermediate layer material surface which is not at the core material side and the brazing filler metal clad on the other surface of the core material, respectively,a hot rolling step of hot rolling the cast intermediate layer material ingot, the cast brazing filler metal ingot clad on the intermediate layer material surface which is not at the core material side and the cast brazing filler metal ingot clad on the other surface of the core material to predetermined thicknesses, respectively,a cladding step of cladding the intermediate layer material rolled to the predetermined thickness on one surface of the core material ingot, cladding the brazing filler metal rolled to the predetermined thickness on the intermediate layer material surface which is not at the core material side, and cladding the brazing filler metal rolled to the predetermined thickness on the other surface of the core material ingot and thus obtaining a clad material,a hot clad rolling step of hot rolling the clad material,a cold rolling step of cold rolling the hot-clad-rolled clad material, andone or more annealing steps of annealing the clad material either during or after the cold rolling step or both during and after the cold rolling step,wherein in the hot clad rolling step, the rolling start temperature is 400 to 520° C., and the number of rolling passes each with a rolling reduction of 30% or more is restricted to five or less while the temperature of the clad material is 200 to 400° C., and the clad material is held at 200 to 560° C. for 1 to 10 hours in the annealing steps. 15. A heat exchanger using the cladded aluminum-alloy material according to claim 1, wherein the crystal grain size of the intermediate layer material after brazing heating is 100 μm or more. 16. A method for producing the heat exchanger according to claim 15, wherein an aluminum alloy material is brazed in an inert gas atmosphere without flux. 17. A heat exchanger using the cladded aluminum-alloy material according to claim 7, wherein the crystal grain size of the intermediate layer material after brazing heating is 100 μm or more. 18. A method for producing the heat exchanger according to claim 17, wherein an aluminum alloy material is brazed in an inert gas atmosphere without flux.