[미국특허]
Compressor bleed systems in turbomachines and methods of extracting compressor airflow
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
F02C-006/08
F02C-009/18
F04D-029/54
출원번호
US-0082524
(2016-03-28)
등록번호
US-10227930
(2019-03-12)
발명자
/ 주소
Saxena, Swati
Rao, Ajay Keshava
Selmeier, Rudolf Konrad
Bennett, Grover Andrew
Jothiprasad, Giridhar
Bourassa, Corey
Pritchard, Byron Andrew
출원인 / 주소
GENERAL ELECTRIC COMPANY
대리인 / 주소
GE Global Patent Operation
인용정보
피인용 횟수 :
0인용 특허 :
24
초록▼
A compressor assembly for a turbomachine includes a compressor wall including circumferentially spaced stator vanes defining at least one row of stator vanes. The at least one row of stator vanes defines at least one stator passage therein. Each stator vane includes a leading edge, an opposite trail
A compressor assembly for a turbomachine includes a compressor wall including circumferentially spaced stator vanes defining at least one row of stator vanes. The at least one row of stator vanes defines at least one stator passage therein. Each stator vane includes a leading edge, an opposite trailing edge defining an axial chord distance, and a pressure side. The compressor assembly also includes, at least one bleed opening defined within the compressor wall and disposed adjacent the pressure side in the at least one stator passage within a range from approximately 20% the axial chord distance upstream of the leading edge to approximately 20% the axial chord distance downstream of the trailing edge. The compressor assembly further includes at least one bleed arm extending from the at least one bleed opening with at least a portion of compressor airflow extractable through the at least one bleed arm.
대표청구항▼
1. A compressor assembly for a turbomachine, said compressor assembly comprising: a compressor wall comprising a plurality of circumferentially spaced stator vanes substantially defining at least one row of stator vanes, said at least one row of stator vanes defining at least one stator passage ther
1. A compressor assembly for a turbomachine, said compressor assembly comprising: a compressor wall comprising a plurality of circumferentially spaced stator vanes substantially defining at least one row of stator vanes, said at least one row of stator vanes defining at least one stator passage therein, wherein each stator vane of said at least one row of stator vanes comprises a leading edge defining an upstream direction, an opposite trailing edge defining a downstream direction, and a pressure side, said leading edge and said trailing edge defining an axial chord distance;at least one bleed opening defined within said compressor wall and disposed adjacent said pressure side in said at least one stator passage at an axial position within a range from approximately 20% said axial chord distance upstream of said leading edge to approximately 20% said axial chord distance downstream of said trailing edge, said at least one bleed opening coupled in flow communication with said at least one stator passage; andat least one bleed arm extending from said at least one bleed opening and coupled in flow communication with said at least one stator passage, wherein compressor airflow is channelable through said at least one stator passage and at least a portion of the compressor airflow is extractable through said at least one bleed arm;wherein said at least one bleed arm is coupled to said compressor wall through at least one blend nose defined between said at least one bleed arm and said compressor wall, said nose comprising a blend radius greater than 2% of a stator passage height, said stator passage height defined as a distance between a compressor shroud and a compressor rotor. 2. The compressor assembly in accordance with claim 1, wherein said at least one bleed arm is defined at a bleed arm angle from said compressor wall, said bleed arm angle is within a range between approximately 20° and approximately 170°. 3. The compressor assembly in accordance with claim 1, wherein said at least one bleed arm comprises a downstream wall, wherein said at least one blend nose includes a downstream blend nose defined between said downstream wall and said compressor wall, and wherein said downstream blend nose extends radially from said compressor wall by 10% of the stator passage height into said at least one stator passage. 4. The compressor assembly in accordance with claim 1, wherein said at least one bleed opening comprises at least one first bleed opening and said at least one bleed arm comprises at least one first bleed arm, said compressor assembly further comprising: at least one second bleed opening defined within said compressor wall downstream of said at least one stator passage; andat least one second bleed arm extending from said at least one second bleed opening, wherein at least a portion of the compressor airflow is extractable through said at least one second bleed arm. 5. The compressor assembly in accordance with claim 1, wherein said at least one bleed opening comprises a continuous shape defining a perimeter formed on said compressor wall, said perimeter comprising a plurality of connected segments forming a polygon. 6. The compressor assembly in accordance with claim 1, wherein said at least one bleed opening comprises a continuous shape defining a perimeter formed on said compressor wall, said perimeter comprising a plurality of connected segments, wherein each perimeter segment of said plurality of segments is a continuously differentiable function that shares a common tangent direction at each connection point to an adjacent segment of the plurality of segments. 7. The compressor assembly in accordance with claim 1 further comprising a scavenger coupled to said at least one bleed arm. 8. The compressor assembly in accordance with claim 1, wherein said at least one bleed arm further comprises at least one stationary airfoil. 9. A compressor assembly for a turbomachine, said compressor assembly comprising: a compressor wall comprising a plurality of circumferentially spaced stator vanes substantially defining at least one row of stator vanes, said at least one row of stator vanes defining at least one stator passage therein, wherein each stator vane of said at least one row of stator vanes comprises a leading edge defining an upstream direction, an opposite trailing edge defining a downstream direction, and a suction side, said leading edge and said trailing edge defining an axial chord distance;at least one bleed opening defined within said compressor wall and disposed adjacent said suction side leading edge in said at least one stator passage at an axial position within a range from approximately 20% said axial chord distance upstream of said leading edge to approximately 20% said axial chord distance downstream of said leading edge or disposed adjacent said suction side in said at least one stator passage at an axial position within a range from approximately 10% said axial chord distance upstream of said trailing edge to approximately 20% said axial chord distance downstream of said trailing edge, said at least one bleed opening coupled in flow communication with said at least one stator passage;and at least one bleed arm extending from said at least one bleed opening and coupled in flow communication with said at least one stator passage, wherein compressor airflow is channelable through said at least one stator passage and at least a portion of the compressor airflow is extractable through said at least one bleed arm;wherein said at least one bleed arm is coupled to said compressor wall through at least one blend nose defined between said at least one bleed arm and said compressor wall, said nose comprising a blend radius greater than 2% of a stator passage height, said stator passage height defined as a distance between a compressor shroud and a compressor rotor. 10. The compressor assembly in accordance with claim 9, wherein said at least one bleed arm is defined at a bleed arm angle from said compressor wall, said bleed arm angle is within a range between approximately 20° and approximately 170°. 11. The compressor assembly in accordance with claim 9, wherein said at least one bleed arm comprises a downstream wall, wherein said at least one blend nose includes a downstream blend nose defined between said downstream wall and said compressor wall, and wherein said downstream blend nose extends radially from said compressor wall by 10% of the stator passage height into said at least one stator passage. 12. The compressor assembly in accordance with claim 9, wherein said at least one bleed opening comprises at least one first bleed opening and said at least one bleed arm comprises at least one first bleed arm, said compressor assembly further comprising: at least one second bleed opening defined within said compressor wall downstream of said at least one stator passage; andat least one second bleed arm extending from said at least one second bleed opening, wherein at least a portion of the compressor airflow is extractable through said at least one second bleed arm. 13. The compressor assembly in accordance with claim 9, wherein said at least one bleed opening comprises a continuous shape defining a perimeter formed on said compressor wall, said perimeter comprising a plurality of connected segments forming a polygon. 14. The compressor assembly in accordance with claim 9, wherein said at least one bleed opening comprises a continuous shape defining a perimeter formed on said compressor wall, said perimeter comprising a plurality of connected segments, wherein each perimeter segment of said plurality of segments is a continuously differentiable function that shares a common tangent direction at each connection point to an adjacent segment of the plurality of segments. 15. The compressor assembly in accordance with claim 9 further comprising a scavenger coupled to said at least one bleed arm. 16. The compressor assembly in accordance with claim 9, wherein said at least one bleed arm further comprises at least one stationary airfoil. 17. A method of extracting compressor airflow from a turbomachine, the turbomachine including a compressor wall including a plurality of circumferentially spaced stator vanes substantially defining at least one row of stator vanes, the at least one row of stator vanes defining at least one stator passage therein, each stator vane of the at least one row of stator vanes includes a leading edge defining an upstream direction, an opposite trailing edge defining a downstream direction, and a pressure side, the leading edge and the trailing edge defines an axial chord distance, at least one bleed opening defined within the compressor wall and disposed adjacent the pressure side in the at least one stator passage, the at least one bleed opening coupled in flow communication with the at least one stator passage, and at least one bleed arm extending from the at least one bleed opening and coupled in flow communication with the at least one stator passage, said method comprising: inducing compressor airflow in the at least one stator passage; and extracting at least a portion of the compressor airflow from the at least one stator passage at the at least one bleed opening at an axial position within a range from approximately 20% the axial chord distance upstream of the leading edge to approximately 20% the axial chord distance downstream of the trailing edge; wherein said at least one bleed arm is coupled to said compressor wall through at least one blend nose defined between said at least one bleed arm and said compressor wall, said nose comprising a blend radius greater than 2% of a stator passage height, said stator passage height defined as a distance between a compressor shroud and a compressor rotor. 18. The method in accordance with claim 17, wherein the at least one bleed opening includes at least one first bleed opening and the bleed arm includes a first bleed arm, the compressor bleed assembly further including at least one second bleed opening defined within the compressor wall downstream of the at least one stator passage and at least one second bleed arm extending from the at least one second bleed opening, said method further comprising extracting at least a portion of the compressor airflow downstream from the at least one stator passage at the at least one second bleed opening through the at least one second bleed arm. 19. A compressor assembly for a turbomachine, said compressor assembly comprising: a compressor wall comprising a plurality of circumferentially spaced stator vanes substantially defining at least one row of stator vanes, said at least one row of stator vanes defining at least one stator passage therein, wherein each stator vane of said at least one row of stator vanes comprises a leading edge defining an upstream direction, an opposite trailing edge defining a downstream direction, and a pressure side, said leading edge and said trailing edge defining an axial chord distance;at least one bleed opening defined within said compressor wall and disposed adjacent said pressure side in said at least one stator passage at an axial position within a range from approximately 20% said axial chord distance upstream of said leading edge to approximately 20% said axial chord distance downstream of said trailing edge, said at least one bleed opening coupled in flow communication with said at least one stator passage; andat least one bleed arm extending from said at least one bleed opening and coupled in flow communication with said at least one stator passage, wherein compressor airflow is channelable through said at least one stator passage and at least a portion of the compressor airflow is extractable through said at least one bleed arm;wherein said at least one bleed arm comprises a downstream wall, said at least one bleed arm coupled to said compressor wall through a downstream blend nose defined between said downstream wall and said compressor wall, downstream nose extends radially from said compressor wall by 10% of a stator passage height into said at least one stator passage, said stator passage height defined as a distance between a compressor shroud and a compressor rotor.
연구과제 타임라인
LOADING...
LOADING...
LOADING...
LOADING...
LOADING...
이 특허에 인용된 특허 (24)
Meindl Thomas (Nussbaumen CHX) Meylan Pierre (Neuenhof CHX) Zierer Thomas (Wettingen CHX), Appliance for extracting secondary air from an axial compressor.
Feulner, Matthew R.; Merry, Brian D.; Chandler, Jesse M.; Suciu, Gabriel L.; Staubach, Joseph B., Combined stability and customer bleed with dirt, water and ice rejection.
Bertuccioli, Luca; Easom, Bruce H.; Smolensky, Leo A.; Burlatsky, Sergei F.; Gottung, Eric J.; Sloan, Michael A.; Hinman, III, Lewis G., Electrostatic particulate separation system and device.
Proctor, Robert; Montgomery, Julius John; Epstein, Michael Jay; Barbe, Roger Owen; Sam, Hai Buu; Ogzewalla, James Bernar; Kemp, Andrew David; Doloresco, Bryan Keith, Gas turbine engine bleed scoops.
McGreehan William F. (West Chester OH) Fintel Bradley W. (Fairfield OH) Lammas Andrew J. (Maineville OH), High pressure compressor flowpath bleed valve extraction slot.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.