검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기과제명 | 딥러닝기반 취향저격 예측 추천 모바일 시스템 개발 |
---|---|
주관연구기관 |
건국대학교 KonKuk University |
연구책임자 | 강현규 |
보고서유형 | 최종보고서 |
발행국가 | 대한민국 |
언어 | 한국어 |
발행년월 | 2020-06 |
과제시작년도 | 2020 |
주관부처 | 과학기술정보통신부 Ministry of Science and ICT |
등록번호 | TRKO202100013047 |
과제고유번호 | 1345318000 |
사업명 | 개인기초연구(교육부)(R&D) |
DB 구축일자 | 2021-09-04 |
키워드 | 딥러닝.학습.추천.여행.문화.모바일. |
□연구개요
본 연구에서는 여러 가지 특정 근거가 되는 데이터를 바탕으로 학습을 하여 적합 추천하는 딥러닝에 기반한 취향저격 추천 알고리즘을 활용한 모바일 추천 시스템으로 여행과 문화 분야의 두 종류 애플리케이션을 개발하였다. 아...