Apoptosis signal-regulating kinas 1 (ASK1) 은 MAP3 Kinase family의 하나로 활성산소나 소포체 스트레스에 의해 나타나는 질병에 중요한 역할을 한다. 우리는 Ligation-Independent Cloning (LIC) 방법을 이용하여 사람의 ASK1 kinase domain (kdhASK1)을 재조합 하였다. 과 발현된 단백질은 두 단계의 chromatography로 잘 정제되었다. 이렇게 정제된 kinase domain 단백질로 ...
Apoptosis signal-regulating kinas 1 (ASK1) 은 MAP3 Kinase family의 하나로 활성산소나 소포체 스트레스에 의해 나타나는 질병에 중요한 역할을 한다. 우리는 Ligation-Independent Cloning (LIC) 방법을 이용하여 사람의 ASK1 kinase domain (kdhASK1)을 재조합 하였다. 과 발현된 단백질은 두 단계의 chromatography로 잘 정제되었다. 이렇게 정제된 kinase domain 단백질로 3차원 구조를 알아내기 위한 결정화 실험을 시도하였다. 재조합 된 kdhASK1의 효소활성을 확인하기 위해 bovine myelin basic protein (MBP) 을 기질로 사용하여 kinase assay를 실행하였다. 기질의 인산화는 capLC-ESI-q-TOF tandem mass spectrometry로 판별하였다. 이와 더불어, capLC-ESI-q-TOF tandem mass spectrometry를 통해 kdhASK1의 Thr690, Thr813, S826, Thr838 그리고 S906 위치에 autophosphorylation이 되는 것을 확인할 수 있었다. Autophosphorylation site의 발견으로 신호전달에서의 ASK1의 auto-regulatory 역할을 예측해 볼 수 있었다. ASK1의 구조?기능 관계를 제안하고 새로 관찰한 추가적인 autophosphorylation 자리를 원자 단계에서 해석하기 위해 결정화 실험을 시도 해 보았지만, 안타깝게도, 구조 연구에 알맞은 결정을 얻기 어려웠다. 그래서, 이미 알려진 PAK1의 활성과 비활성의 X-ray 구조를 바탕으로 MODELLER 9v3 프로그램을 돌려 kdhASK1의 잘 예측된 활성과 비활성 3차원 모델을 만들었다. 우리 모델들은 다른 protein kinase에서 공통적으로 보이는 상호작용과 함께, 보다 섬세하고 특이적인 조절 메커니즘을 밝혀냈다. 특히, 이 모델들을 통해서 Thr690 위치의 인산화로 유도되는 효소 단백질의 활성저해 기전에 대한 가능성을 볼 수 있었다. 인산화된 Thr690 위치에서 나타나는 이 같은 저해기전은 Cdk 단백질들을 제외하고는 다른 효소 단백질에서 발견할 수 없었던 현상이었다. 따라서, 이러한 발견은 ASK1이 부분적으로 Cdk들에서 관찰되는 중요한 저해 기전을 닮았을 수 있다는 가능성을 제시하였다. ASK1에서 특징적으로 관찰된 phosphorylation와 이와 같은 modification에 의해 나타날 수 있는 기전의 발견은 ASK1의 새로운 조절 물질을 개발하는 데에 유익한 정보가 될 수 있을 것이다.
Apoptosis signal-regulating kinas 1 (ASK1) 은 MAP3 Kinase family의 하나로 활성산소나 소포체 스트레스에 의해 나타나는 질병에 중요한 역할을 한다. 우리는 Ligation-Independent Cloning (LIC) 방법을 이용하여 사람의 ASK1 kinase domain (kdhASK1)을 재조합 하였다. 과 발현된 단백질은 두 단계의 chromatography로 잘 정제되었다. 이렇게 정제된 kinase domain 단백질로 3차원 구조를 알아내기 위한 결정화 실험을 시도하였다. 재조합 된 kdhASK1의 효소활성을 확인하기 위해 bovine myelin basic protein (MBP) 을 기질로 사용하여 kinase assay를 실행하였다. 기질의 인산화는 capLC-ESI-q-TOF tandem mass spectrometry로 판별하였다. 이와 더불어, capLC-ESI-q-TOF tandem mass spectrometry를 통해 kdhASK1의 Thr690, Thr813, S826, Thr838 그리고 S906 위치에 autophosphorylation이 되는 것을 확인할 수 있었다. Autophosphorylation site의 발견으로 신호전달에서의 ASK1의 auto-regulatory 역할을 예측해 볼 수 있었다. ASK1의 구조?기능 관계를 제안하고 새로 관찰한 추가적인 autophosphorylation 자리를 원자 단계에서 해석하기 위해 결정화 실험을 시도 해 보았지만, 안타깝게도, 구조 연구에 알맞은 결정을 얻기 어려웠다. 그래서, 이미 알려진 PAK1의 활성과 비활성의 X-ray 구조를 바탕으로 MODELLER 9v3 프로그램을 돌려 kdhASK1의 잘 예측된 활성과 비활성 3차원 모델을 만들었다. 우리 모델들은 다른 protein kinase에서 공통적으로 보이는 상호작용과 함께, 보다 섬세하고 특이적인 조절 메커니즘을 밝혀냈다. 특히, 이 모델들을 통해서 Thr690 위치의 인산화로 유도되는 효소 단백질의 활성저해 기전에 대한 가능성을 볼 수 있었다. 인산화된 Thr690 위치에서 나타나는 이 같은 저해기전은 Cdk 단백질들을 제외하고는 다른 효소 단백질에서 발견할 수 없었던 현상이었다. 따라서, 이러한 발견은 ASK1이 부분적으로 Cdk들에서 관찰되는 중요한 저해 기전을 닮았을 수 있다는 가능성을 제시하였다. ASK1에서 특징적으로 관찰된 phosphorylation와 이와 같은 modification에 의해 나타날 수 있는 기전의 발견은 ASK1의 새로운 조절 물질을 개발하는 데에 유익한 정보가 될 수 있을 것이다.
Apoptosis signal-regulating kinase 1 (ASK1) is one of the MAP3 Kinase family that has pivotal involvements in reactive oxygen species (ROS) or endoplasmic reticulum (ER) stress related diseases. I cloned the human ASK1 kinase domain (kdhASK1) using the Ligation-Independent Cloning (LIC) method. The ...
Apoptosis signal-regulating kinase 1 (ASK1) is one of the MAP3 Kinase family that has pivotal involvements in reactive oxygen species (ROS) or endoplasmic reticulum (ER) stress related diseases. I cloned the human ASK1 kinase domain (kdhASK1) using the Ligation-Independent Cloning (LIC) method. The over-expressed domain was well purified using two chromatography steps. The crystallization trial of the kinase domain has been performed to determine three dimensional structure of kdhASK1. To confirm kinase activity of the recombinant ASK1 kinase domain, bovine myelin basic protein (MBP) was used as a substrate for the kinase assay. The kinase activity of the recombinant kdhASK1 was confirmed by the capLC-ESI-q-TOF tandem mass spectrometry. Autophosphorylation activity of the kinase domain has also been detected. Several autophosphorylation sites including Thr690, Thr813, S826, Thr838 and S906 have been found. The autophosphorylation suggests the putative auto-regulatory role of ASK1 in the signaling pathway. In order to provide structural and functional relationships of the ASK1 catalytic domain and to interpret molecular functions of the new additional autophosphorylation sites in the atomic level, crystallization trials had been performed. However, crystals suitable to structural study had not been obtained. Therefore, modeling structures of both active and inactive kdhASK1 have been calculated based on the known PAK1 active and inactive X-ray structures using MODELLER9v3. Our models suggested more fine and specific control mechanisms as well as broadly conserved mechanisms of the autophosphorylations. One of the new autophosphorylation sites is Thr690 of which the site has not been found in other kinases except Cdks where phosphorylation happens at this site. Analyses of calculated models suggest that a similar critical inhibition mechanism discovered in Cdks would be happen if this site is phosphorylated. The uncovering of unique phosphorylation sites and the suggestion of the plausible mechanisms by these modifications can be useful information to develop new regulatory substances of ASK1.
Apoptosis signal-regulating kinase 1 (ASK1) is one of the MAP3 Kinase family that has pivotal involvements in reactive oxygen species (ROS) or endoplasmic reticulum (ER) stress related diseases. I cloned the human ASK1 kinase domain (kdhASK1) using the Ligation-Independent Cloning (LIC) method. The over-expressed domain was well purified using two chromatography steps. The crystallization trial of the kinase domain has been performed to determine three dimensional structure of kdhASK1. To confirm kinase activity of the recombinant ASK1 kinase domain, bovine myelin basic protein (MBP) was used as a substrate for the kinase assay. The kinase activity of the recombinant kdhASK1 was confirmed by the capLC-ESI-q-TOF tandem mass spectrometry. Autophosphorylation activity of the kinase domain has also been detected. Several autophosphorylation sites including Thr690, Thr813, S826, Thr838 and S906 have been found. The autophosphorylation suggests the putative auto-regulatory role of ASK1 in the signaling pathway. In order to provide structural and functional relationships of the ASK1 catalytic domain and to interpret molecular functions of the new additional autophosphorylation sites in the atomic level, crystallization trials had been performed. However, crystals suitable to structural study had not been obtained. Therefore, modeling structures of both active and inactive kdhASK1 have been calculated based on the known PAK1 active and inactive X-ray structures using MODELLER9v3. Our models suggested more fine and specific control mechanisms as well as broadly conserved mechanisms of the autophosphorylations. One of the new autophosphorylation sites is Thr690 of which the site has not been found in other kinases except Cdks where phosphorylation happens at this site. Analyses of calculated models suggest that a similar critical inhibition mechanism discovered in Cdks would be happen if this site is phosphorylated. The uncovering of unique phosphorylation sites and the suggestion of the plausible mechanisms by these modifications can be useful information to develop new regulatory substances of ASK1.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.