현대사회는 생활환경의 편리성 및 고급화 추구로 인해 건물 내에서 인화성 높은 내장재를 사용함으로써 화재발생시 높은 발열량과 다양한 연소생성물들이 발생하고 있다. 이로 인해 화재 및 재난의 규모가 커지고 사고의 형태도 다양해짐에 따라 이에 부합되는 화재의 예방과 경계를 위한 소방시설의 중요성이 부각되고 있다.소방시설 중에서도 경보설비는 화재의 예방과 경계를 담당하는 역할을 하는 중요한 설비로서 자동화재탐지설비가 이에 해당된다. 자동화재탐지설비 중 ...
현대사회는 생활환경의 편리성 및 고급화 추구로 인해 건물 내에서 인화성 높은 내장재를 사용함으로써 화재발생시 높은 발열량과 다양한 연소생성물들이 발생하고 있다. 이로 인해 화재 및 재난의 규모가 커지고 사고의 형태도 다양해짐에 따라 이에 부합되는 화재의 예방과 경계를 위한 소방시설의 중요성이 부각되고 있다.소방시설 중에서도 경보설비는 화재의 예방과 경계를 담당하는 역할을 하는 중요한 설비로서 자동화재탐지설비가 이에 해당된다. 자동화재탐지설비 중 화재감지기는 발신기, 중계기, 수신기 및 경보장치 등과 함께 소방대상물에 설치되어 화재발생시 생성되는 열, 연기 및 불꽃 등과 같은 화재징후를 조기에 감지하여 수신기에 신호를 발하고 경종이나 음향장치로 화재 사실을 통보하여 조기피난 및 초기소화를 유효하게 하는 매우 중요한 설비이다. 그러나 건축물이 초고층화, 인텔리전트화 됨에 따라 경계구역수의 급격한 증가로 자동화재탐지설비의 배선수가 기하급수적으로 증가하게 되고 이에 따라 시공의 어려움이 발생한다. 아울러 오래된 건축물의 경우 경년변화에 따른 배선 및 감지기의 노후화로 인하여 화재신호의 송․수신에 어려움이 발생하게 되고, 이로 인해 배선 및 감지기의 교체 등 유지관리의 문제점이 나타날 수 있다. 그동안 대형 참사가 발생했던 노래방이나 고시원의 경우도 10년 이상 된 낡은 건물이 대부분이었고 허술한 배선공사와 유지관리의 문제로 인해 화재 초기에 화재감지기가 제대로 작동하지 않아 큰 피해를 겪은 사례들이 많이 발생하였다. 또한, 국보문화재 및 사적, 민속마을 등과 같은 역사적으로 오래된 건축물의 경우 원형 그대로를 보존해야 된다는 이유로 배선 시공에 의한 자동화재탐지설비의 설치를 꺼려하고 있는 것이 현실정이다. 이로 인해 역사적 건축물의 경우 화재발생 사실을 조기에 감지할 수 없어 초기소화 및 초동대응이 늦어지게 되고, 화재 시 소중한 문화유산을 잃게 되는 경우가 대부분이다. 이러한 문제점을 극복하기 위한 대책으로 현재 첨단 IT 기술 중 하나인 무선시스템이 대두되고 있는 실정이다. IT산업의 발전으로 무선시스템(Radio frequency system)은 통신, 의학, 자동차, 건축물 등 다양한 분야에서 적용되어 실생활에 광범위하게 이용되고 있지만, 소방분야에서의 무선시스템은 도입단계로서 현재 사용이 미미하여 단독경보형감지기에만 적용되고 있다. 현재 국내에서 개발된 무선형 단독경보형감지기는 무선신호를 이용하여 감지기와 게이트웨이(gateway) 간을 송·수신하는 부가적 기능으로 사용되고 있다. 그러나 소방설비에서 무선시스템은 사람의 생명과 연관되기 때문에 편리성 및 실용성보다는 안전성 및 신뢰성이 확보된 후에 적용되어야 한다. 따라서 본 연구에서는 소방 IT분야에 도입될 무선화재감지기의 효용성 및 신뢰성을 확인하고자, 현재 가장 많이 상용화되어 있는 2.4 GHz의 주파수를 사용하는 무선모듈을 이용하여, 무선화재감지기의 응답특성 실험을 실시하고, 도출된 결과를 바탕으로 무선화재감지기의 신뢰성을 검토하고 향후 소방분야에 도입을 위한 자료로 활용하고자 한다.
현대사회는 생활환경의 편리성 및 고급화 추구로 인해 건물 내에서 인화성 높은 내장재를 사용함으로써 화재발생시 높은 발열량과 다양한 연소생성물들이 발생하고 있다. 이로 인해 화재 및 재난의 규모가 커지고 사고의 형태도 다양해짐에 따라 이에 부합되는 화재의 예방과 경계를 위한 소방시설의 중요성이 부각되고 있다.소방시설 중에서도 경보설비는 화재의 예방과 경계를 담당하는 역할을 하는 중요한 설비로서 자동화재탐지설비가 이에 해당된다. 자동화재탐지설비 중 화재감지기는 발신기, 중계기, 수신기 및 경보장치 등과 함께 소방대상물에 설치되어 화재발생시 생성되는 열, 연기 및 불꽃 등과 같은 화재징후를 조기에 감지하여 수신기에 신호를 발하고 경종이나 음향장치로 화재 사실을 통보하여 조기피난 및 초기소화를 유효하게 하는 매우 중요한 설비이다. 그러나 건축물이 초고층화, 인텔리전트화 됨에 따라 경계구역수의 급격한 증가로 자동화재탐지설비의 배선수가 기하급수적으로 증가하게 되고 이에 따라 시공의 어려움이 발생한다. 아울러 오래된 건축물의 경우 경년변화에 따른 배선 및 감지기의 노후화로 인하여 화재신호의 송․수신에 어려움이 발생하게 되고, 이로 인해 배선 및 감지기의 교체 등 유지관리의 문제점이 나타날 수 있다. 그동안 대형 참사가 발생했던 노래방이나 고시원의 경우도 10년 이상 된 낡은 건물이 대부분이었고 허술한 배선공사와 유지관리의 문제로 인해 화재 초기에 화재감지기가 제대로 작동하지 않아 큰 피해를 겪은 사례들이 많이 발생하였다. 또한, 국보문화재 및 사적, 민속마을 등과 같은 역사적으로 오래된 건축물의 경우 원형 그대로를 보존해야 된다는 이유로 배선 시공에 의한 자동화재탐지설비의 설치를 꺼려하고 있는 것이 현실정이다. 이로 인해 역사적 건축물의 경우 화재발생 사실을 조기에 감지할 수 없어 초기소화 및 초동대응이 늦어지게 되고, 화재 시 소중한 문화유산을 잃게 되는 경우가 대부분이다. 이러한 문제점을 극복하기 위한 대책으로 현재 첨단 IT 기술 중 하나인 무선시스템이 대두되고 있는 실정이다. IT산업의 발전으로 무선시스템(Radio frequency system)은 통신, 의학, 자동차, 건축물 등 다양한 분야에서 적용되어 실생활에 광범위하게 이용되고 있지만, 소방분야에서의 무선시스템은 도입단계로서 현재 사용이 미미하여 단독경보형감지기에만 적용되고 있다. 현재 국내에서 개발된 무선형 단독경보형감지기는 무선신호를 이용하여 감지기와 게이트웨이(gateway) 간을 송·수신하는 부가적 기능으로 사용되고 있다. 그러나 소방설비에서 무선시스템은 사람의 생명과 연관되기 때문에 편리성 및 실용성보다는 안전성 및 신뢰성이 확보된 후에 적용되어야 한다. 따라서 본 연구에서는 소방 IT분야에 도입될 무선화재감지기의 효용성 및 신뢰성을 확인하고자, 현재 가장 많이 상용화되어 있는 2.4 GHz의 주파수를 사용하는 무선모듈을 이용하여, 무선화재감지기의 응답특성 실험을 실시하고, 도출된 결과를 바탕으로 무선화재감지기의 신뢰성을 검토하고 향후 소방분야에 도입을 위한 자료로 활용하고자 한다.
In this study, a wireless module with 2.4GHz frequency that is widely used for commercial purpose was developed to confirm the effectiveness and reliability of wireless fire detecting system and establish the foundation of regulation and research for the wireless fire detecting system that will be i...
In this study, a wireless module with 2.4GHz frequency that is widely used for commercial purpose was developed to confirm the effectiveness and reliability of wireless fire detecting system and establish the foundation of regulation and research for the wireless fire detecting system that will be introduced to fire protection area. The findings are summarized after measuring the response characteristics according to typical obstacles such as wall types, fire variables and installation environment which may affect the wireless environment in the building. 1. Test of response characteristics by wall type; The typical obstacles that may affect the wireless communication environment were tested to observe the characteristic of transmitted waves. As a result, the more the density of medium grain, the more the transmitted loss was occurred in the order of block wall, brick wall, tiled brick wall and concrete wall. However, in the case of the sandwich panel and the steel gypsum panel with metal surface, no receiving signals were measured. In the case of testing the reflected wave, average strength of receiving signal and the difference of Received signal strength indication were found to be similar regardless of type of obstacles such as block wall, brick wall, tiled brick wall and concrete wall. However, in case of sandwich panel and steel gypsum panel, high receiving signals were detected. To observe the characteristic of transmitted wave by wall type, average transmitted loss was analyzed based on the strength of normal transmit power (0 dBm) without wall between the transmitting/receiving antennas inside of performance test chamber (150 cm ∼ 250 cm) to measure channel power(CP), Received signal strength indication(RSSI) and Packet error rate (PER). The result are; 1) The channel power showed higher transmitted loss in the order of block wall (-9.11 dBm), brick wall (-15.02 dBm), tiled brick wall (-19.40 dBm) and concrete wall (thickness 150 mm: -21.73 dBm and 200 mm: -29.41 dBm). 2) Received signal sensitivity indication showed higher transmitted loss in the order of block wall (-20.8 dBm), brick wall (-24.0 dBm), tiled brick wall (-28.2 dBm) and concrete wall (thickness 150 mm: -32.13 dBm and 200 mm: -45.6 dBm). 3) Packer error rate showed 100% transmitted rate like normal condition in case of block wall, brick wall, tiled brick wall and concrete wall. But, for the sandwich panel and steel gypsum panel. the transmitted rate was 0%, showing a problem in data transmission. To observe the characteristic of reflected wave by wall type, CP, RSSI and PER between the transmitting/receiving antennas inside of performance test chamber, focusing on the normal line of side wall, were measured. The result is summarized below; 1) The CP showed that average value was ranged from -46.94 dBm to -51.49 dBm according to the wall type, which showed no significant difference. 2) RSSI showed that average value was ranged from -40.1 dBm to -45.9 dBm according to the wall type, which showed no significant difference. 3) PER was measured as 0% regardless of wall existence, while data transmission rate was 100%. 2. Test of response characteristics by fire variable; The response characteristic for the causes of fire such as wood, flammable liquid and paper that may affect the wireless communication environment in the case of fire were tested and measured. As a result, the initial received signal sensitivity indication and constant value less than ±5 dBm were shown regardless of temperature rise by a flame, smoke flow and smoke density. Packet error rate was 0% while data transmitted rate was 100%. According to the characteristic of an electric wave which is transmitted through the air as a medium, it is observed that the effect of temperature rise by a flame and the smoke production rate on the transmitted of electric wave is very low. As a result of measuring RSSI and PER, RSSI for wood fire, flammable liquid fire and paper fire showed the graph of initial RSSI and maximum ±5 dBm constantly. And PER was 0% while data transmitted rate was 100%. Therefore, it is found that there is no transmitted error as long as caloric heat does not approach directly to the wireless module and antenna. 3. Test of response characteristics by installation environment; As the test was performed by building section, floating population and time zone that can be an obstacle on the route of wireless electric wave in a building, the more the distance of transmitting/receiving module is increasing in the hallway, the more the power loss is increased. In case of compartment floors, the power loss of receiving signal was significant according to various obstacles on the route of electric wave and increased moving distance. When the transmitting/receiving module excess one floor, communication failure rate was higher and in case of over 2 floors, the PER was 100%. It was found that communication was possible in the adjacent classrooms on the same story and the failure rate by moving population and time zone was relatively low. After experimenting according to the heigh of installation, the receive sensitivity is better when installed at 1.5 m high rather than on the ceiling. Considering the above findings, it is observed that there is difference in transmitted loss and reflected loss by wireless signal sensitivity, packet error rate and wireless power according to the type of wall and obstacle and there is a problem in data transmitted upon the transmitted loss. As the fire signal data should be sure and accurate, the reliability of data transmission should be secured. However, the wireless fire detecting system may not secure the reliability of wireless transmission in case of complex building or complicated configuration. Thus, a system is required to confirm the value of objective transmitting/receiving value when installation. Therefore, considering that a measuring instrument to che
In this study, a wireless module with 2.4GHz frequency that is widely used for commercial purpose was developed to confirm the effectiveness and reliability of wireless fire detecting system and establish the foundation of regulation and research for the wireless fire detecting system that will be introduced to fire protection area. The findings are summarized after measuring the response characteristics according to typical obstacles such as wall types, fire variables and installation environment which may affect the wireless environment in the building. 1. Test of response characteristics by wall type; The typical obstacles that may affect the wireless communication environment were tested to observe the characteristic of transmitted waves. As a result, the more the density of medium grain, the more the transmitted loss was occurred in the order of block wall, brick wall, tiled brick wall and concrete wall. However, in the case of the sandwich panel and the steel gypsum panel with metal surface, no receiving signals were measured. In the case of testing the reflected wave, average strength of receiving signal and the difference of Received signal strength indication were found to be similar regardless of type of obstacles such as block wall, brick wall, tiled brick wall and concrete wall. However, in case of sandwich panel and steel gypsum panel, high receiving signals were detected. To observe the characteristic of transmitted wave by wall type, average transmitted loss was analyzed based on the strength of normal transmit power (0 dBm) without wall between the transmitting/receiving antennas inside of performance test chamber (150 cm ∼ 250 cm) to measure channel power(CP), Received signal strength indication(RSSI) and Packet error rate (PER). The result are; 1) The channel power showed higher transmitted loss in the order of block wall (-9.11 dBm), brick wall (-15.02 dBm), tiled brick wall (-19.40 dBm) and concrete wall (thickness 150 mm: -21.73 dBm and 200 mm: -29.41 dBm). 2) Received signal sensitivity indication showed higher transmitted loss in the order of block wall (-20.8 dBm), brick wall (-24.0 dBm), tiled brick wall (-28.2 dBm) and concrete wall (thickness 150 mm: -32.13 dBm and 200 mm: -45.6 dBm). 3) Packer error rate showed 100% transmitted rate like normal condition in case of block wall, brick wall, tiled brick wall and concrete wall. But, for the sandwich panel and steel gypsum panel. the transmitted rate was 0%, showing a problem in data transmission. To observe the characteristic of reflected wave by wall type, CP, RSSI and PER between the transmitting/receiving antennas inside of performance test chamber, focusing on the normal line of side wall, were measured. The result is summarized below; 1) The CP showed that average value was ranged from -46.94 dBm to -51.49 dBm according to the wall type, which showed no significant difference. 2) RSSI showed that average value was ranged from -40.1 dBm to -45.9 dBm according to the wall type, which showed no significant difference. 3) PER was measured as 0% regardless of wall existence, while data transmission rate was 100%. 2. Test of response characteristics by fire variable; The response characteristic for the causes of fire such as wood, flammable liquid and paper that may affect the wireless communication environment in the case of fire were tested and measured. As a result, the initial received signal sensitivity indication and constant value less than ±5 dBm were shown regardless of temperature rise by a flame, smoke flow and smoke density. Packet error rate was 0% while data transmitted rate was 100%. According to the characteristic of an electric wave which is transmitted through the air as a medium, it is observed that the effect of temperature rise by a flame and the smoke production rate on the transmitted of electric wave is very low. As a result of measuring RSSI and PER, RSSI for wood fire, flammable liquid fire and paper fire showed the graph of initial RSSI and maximum ±5 dBm constantly. And PER was 0% while data transmitted rate was 100%. Therefore, it is found that there is no transmitted error as long as caloric heat does not approach directly to the wireless module and antenna. 3. Test of response characteristics by installation environment; As the test was performed by building section, floating population and time zone that can be an obstacle on the route of wireless electric wave in a building, the more the distance of transmitting/receiving module is increasing in the hallway, the more the power loss is increased. In case of compartment floors, the power loss of receiving signal was significant according to various obstacles on the route of electric wave and increased moving distance. When the transmitting/receiving module excess one floor, communication failure rate was higher and in case of over 2 floors, the PER was 100%. It was found that communication was possible in the adjacent classrooms on the same story and the failure rate by moving population and time zone was relatively low. After experimenting according to the heigh of installation, the receive sensitivity is better when installed at 1.5 m high rather than on the ceiling. Considering the above findings, it is observed that there is difference in transmitted loss and reflected loss by wireless signal sensitivity, packet error rate and wireless power according to the type of wall and obstacle and there is a problem in data transmitted upon the transmitted loss. As the fire signal data should be sure and accurate, the reliability of data transmission should be secured. However, the wireless fire detecting system may not secure the reliability of wireless transmission in case of complex building or complicated configuration. Thus, a system is required to confirm the value of objective transmitting/receiving value when installation. Therefore, considering that a measuring instrument to che
※ AI-Helper는 부적절한 답변을 할 수 있습니다.