[학위논문]웨어러블 에너지 하베스팅 시스템을 위한 나노구조 기반 압전 및 텍스타일 기반 마찰전기 제너레이터 Nanostructured Piezoelectric and Textile based Triboelectric Generator for Wearable Energy Harvesting System원문보기
웨어러블 에너지 하베스팅은 대규모의 발전 장치부터 소형 나노기기까지 다양한 분야에 응용하는 연구가 이루어지고 있다. 특히, 텍스타일형 마찰전기에너지 하베스팅 기술은 인체 착용이 유용할 뿐만 아니라 유연하고, 가볍고, 편안하기 때문에 유망한 연구이다. 본 연구에서는 웨어러블 에너지 하베스팅을 위한 시스템을 구현하기 위해 압전 및 마찰전기 ...
웨어러블 에너지 하베스팅은 대규모의 발전 장치부터 소형 나노기기까지 다양한 분야에 응용하는 연구가 이루어지고 있다. 특히, 텍스타일형 마찰전기에너지 하베스팅 기술은 인체 착용이 유용할 뿐만 아니라 유연하고, 가볍고, 편안하기 때문에 유망한 연구이다. 본 연구에서는 웨어러블 에너지 하베스팅을 위한 시스템을 구현하기 위해 압전 및 마찰전기 제너레이터를 개발하였다. 전기방사 공정을 이용하여 재료의 농도, 니들-컬렉터 거리 등의 조건에서 가장 균일하게 압전 나노파이버를 형성할 수 있는 공정 조건을 최적화하였다. 또한 스트레칭 동작에서 에너지 생산이 가능한 주름 구조의 텍스타일형 마찰전기 제너레이터를 제시한다. 본 연구에서 제안하는 텍스타일형 TEG는 텍스타일이라는 재료의 특성을 이용하여 박음질을 통해 주름구조를 제작하였으며 추가적인 지지대 없이 에어갭을 생성하였다. 결과적으로, 압력을 가하고 문지르는 행동뿐만 아니라 스트레칭 동작에서도 에너지 생성 가능한 것을 확인하였다. 약 140%에서 스트레칭/회복 동작을 반복하였을 때 30.3V의 결과 값을 보여주었다. 또한, 다양한 신체 활동에서 에너지가 생성되는 것을 확인하였다. 이 결과로 주름구조 텍스타일 기반 TEG는 자가 파워 시스템이 될 수 있는 잠재력을 보여주었다.
웨어러블 에너지 하베스팅은 대규모의 발전 장치부터 소형 나노기기까지 다양한 분야에 응용하는 연구가 이루어지고 있다. 특히, 텍스타일형 마찰전기 에너지 하베스팅 기술은 인체 착용이 유용할 뿐만 아니라 유연하고, 가볍고, 편안하기 때문에 유망한 연구이다. 본 연구에서는 웨어러블 에너지 하베스팅을 위한 시스템을 구현하기 위해 압전 및 마찰전기 제너레이터를 개발하였다. 전기방사 공정을 이용하여 재료의 농도, 니들-컬렉터 거리 등의 조건에서 가장 균일하게 압전 나노파이버를 형성할 수 있는 공정 조건을 최적화하였다. 또한 스트레칭 동작에서 에너지 생산이 가능한 주름 구조의 텍스타일형 마찰전기 제너레이터를 제시한다. 본 연구에서 제안하는 텍스타일형 TEG는 텍스타일이라는 재료의 특성을 이용하여 박음질을 통해 주름구조를 제작하였으며 추가적인 지지대 없이 에어갭을 생성하였다. 결과적으로, 압력을 가하고 문지르는 행동뿐만 아니라 스트레칭 동작에서도 에너지 생성 가능한 것을 확인하였다. 약 140%에서 스트레칭/회복 동작을 반복하였을 때 30.3V의 결과 값을 보여주었다. 또한, 다양한 신체 활동에서 에너지가 생성되는 것을 확인하였다. 이 결과로 주름구조 텍스타일 기반 TEG는 자가 파워 시스템이 될 수 있는 잠재력을 보여주었다.
The main purpose of this study was to develop an wearable energy harvester based on human activities. Wearable energy harvester need to consider parameters such as flexibility, stretchability and comfortability. This study suggest that the piezoelectric response increased as improved polarization by...
The main purpose of this study was to develop an wearable energy harvester based on human activities. Wearable energy harvester need to consider parameters such as flexibility, stretchability and comfortability. This study suggest that the piezoelectric response increased as improved polarization by local electric field generated by residual charges, implying that the energy conversion efficiency of the electrospun fibers can be controlled by electrospinning conditions. This study presents the mechanism underlying the additionalpolingofelectrospun fibers by local electric fields originating from residual charges in the far-field electrospinning process. The strength of the local electric field calculated through simulations exceeds the reported strength of near-field electrospinning (10 MV/m). The piezoelectric output of electrospun poly(vinylidene fluoride-co-trifluoroethylene) mats is determined through a push test, and bottom and top output signals are compared. Here the results are consistent with simulation results. This indicates that the piezoelectric output of electrospun fibers can be enhanced by residual charges near the electrode.Triboelecric energy harvesting has been applied to various fields, from large-scale power generation to small electronics. Triboelectric energy is generated when certain materials come into frictional contact, e.g., static electricity from rubbing a shoe on a carpet. In particular, textile-based triboelectric energy-harvesting technologies are one of the most promising approaches because they are not only flexible, light, and comfortable but also wearable. Most previous textile-based triboelectric generators (TEGs) generate energy by vertically pressing and rubbing something. However, we propose a corrugated textile-based triboelectric generator (CT-TEG) that can generate energy by stretching. Moreover, the CT-TEG is sewn into a corrugated structure that contains an effective air gap without additional spacers. The resulting CT-TEG can generate considerable energy from various deformations, not only by pressing and rubbing but also by stretching. The maximum output voltage of the TEG can reach up to 30.3 V with stretching and releasing motions. Additionally, we demonstrate the generation of sufficient energy from various activities of a human body to power about 55 LEDs. These results demonstrate the potential application of CT-TEGs for self-powered systems.
The main purpose of this study was to develop an wearable energy harvester based on human activities. Wearable energy harvester need to consider parameters such as flexibility, stretchability and comfortability. This study suggest that the piezoelectric response increased as improved polarization by local electric field generated by residual charges, implying that the energy conversion efficiency of the electrospun fibers can be controlled by electrospinning conditions. This study presents the mechanism underlying the additionalpolingofelectrospun fibers by local electric fields originating from residual charges in the far-field electrospinning process. The strength of the local electric field calculated through simulations exceeds the reported strength of near-field electrospinning (10 MV/m). The piezoelectric output of electrospun poly(vinylidene fluoride-co-trifluoroethylene) mats is determined through a push test, and bottom and top output signals are compared. Here the results are consistent with simulation results. This indicates that the piezoelectric output of electrospun fibers can be enhanced by residual charges near the electrode.Triboelecric energy harvesting has been applied to various fields, from large-scale power generation to small electronics. Triboelectric energy is generated when certain materials come into frictional contact, e.g., static electricity from rubbing a shoe on a carpet. In particular, textile-based triboelectric energy-harvesting technologies are one of the most promising approaches because they are not only flexible, light, and comfortable but also wearable. Most previous textile-based triboelectric generators (TEGs) generate energy by vertically pressing and rubbing something. However, we propose a corrugated textile-based triboelectric generator (CT-TEG) that can generate energy by stretching. Moreover, the CT-TEG is sewn into a corrugated structure that contains an effective air gap without additional spacers. The resulting CT-TEG can generate considerable energy from various deformations, not only by pressing and rubbing but also by stretching. The maximum output voltage of the TEG can reach up to 30.3 V with stretching and releasing motions. Additionally, we demonstrate the generation of sufficient energy from various activities of a human body to power about 55 LEDs. These results demonstrate the potential application of CT-TEGs for self-powered systems.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.