$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

본논문에서는 GFI(Generalized Fuzzy Isodata)와 FI(Fuzzy Isodata) 알고리즘에 관한 이론을 고찰하고 이를 타이어 접지면 패턴 분류에 적용해 보았다. GFI 알고리즘은 FI 알고리즘의 일반화된 형태로서 분할된 군집에 대해서도 퍼지 분할 행렬(fuzzy partition matrix)을 고려해 다시 군집화(clustering)를 가능하게 하는 알고리즘이다. GFI 알고리즘을 사용하여 이진 트리를 구성함에 있어서 각 노드에서의 분할 여부, 즉 군잡화의 타당성(clustering validity) 점검 및 최종적인 이진 트리의 완성은 FDH(Fuzzy Divisve Hierarchical) 군집화알고리즘을 통해 이루어진다. 타이어 접지면에 대한 표준 특징량을 선정하거나 패턴 분류를 수행함에 있어서 이들 알고리즘은모두 우수한 성능을 가짐을 알 수 있었다. 패턴의 특징량으로는 전처리된 타이어 접지면 영상에 나타나는 윤곽선(edge)의 각도 성분을 선정하였으며 이렇게 선정된 특징량은 패턴의 특징을 잘 표현해 주는 유용한 정보를 가진 것으로 생각된다.

Abstract

In this paper GFI (Generalized Fuzzy Isodata) and FI (Fuzzy Isodata) algorithms are studied and applied to the tire tread pattern classification problem. GFI algorithm which repeatedly grouping the partitioned cluster depending on the fuzzy partition matrix is general form of GI algorithm. In the constructing the binary tree using GFI algorithm cluster validity, namely, whether partitioned cluster is feasible or not is checked and construction of the binary tree is obtained by FDH clustering algorithm. These algorithms show the good performance in selecting the prototypes of each patterns and classifying patterns. Directions of edge in the preprocessed image of tire tread pattern are selected as features of pattern. These features are thought to have useful information which well represents the characteristics of patterns.

참고문헌 (9)

  1. Fuzzy Sets in Patter Recognition ; Methodology and Methods , W.Pedrycz , Pattern Recognition / v.23,pp.121-146, 1990
  2. Efficient Implementation of Fuzzy C-Means Clustering Algorithms , R.L.Cannon;J.V.Dave;J.C.Bezdek , IEEE Trans. Pattern Anal. & Machine Int. / v.PAMI8,pp.248-255, 1986
  3. J.C.Bezdek , Pattern Recognition with Fuzzy Objective Function Algorithms / v.,pp., 1981
  4. Hierarchical Pattern Classification , D.Dimitrescu , Fuzzy sets and Systems / v.,pp.145-162, 1988
  5. A Fuzzy Relative of ISODATA Process and Its Use in Detecting Compact, Well-separated Clusters , J.Dunn , J. Cybern / v.,pp.319-350, 1974
  6. Clusters Validity with Fuzzy Sets , J.Bezdek , J. Cybern / v.,pp.58-72, 1974
  7. Algorithms of Fuzzy Clustering with Partial Supervision , W.Pedrycz , Pattern Recognition Letters / v.,pp.13-20, 1985
  8. 이치화 영상에 대한 계조치 동시 발생 행렬을 이용한 타이어 접지 패턴의 분류 , 정순원 , 고려대 석사 학위 논문 / v.,pp., 1992
  9. Textural Features for Image Classification , R.M.Haralick;K.Shanmugam;I.Dinstein , IEEE Trans. Sys., Man, &Cybern. / v.SMC-3,pp.610-621, 1973

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일