구조재료용 요업체로 널리 쓰이는 질화규소 요업체를 2단계 가스압 소결 방식에 의해 치밀화시켰을 때의 효과를 상압조절, 단순 가스압소결 또는 HIP 처리시와 비교하였다. 상압 소결시에는 $1800^{\circ}C$ 이상에서 분해가 일어나지만 질소 가스에 의한 가스압 소결시에는 소결 온도를 더 높일 수 있어서 ${\beta}-Si_3N_4$ 침상 조직의 발달을 이룰 수 있었다. 질소 가스압이 2MPa 정도이면 $1890^{\circ}C$까지도 상압소결시에 비해 분해가 현저히 억제될 수 있어서, 폐기공이 형성될 수 있는 단계까지는 분해만 억제시킬 수 있는 정도의 비교적 낮은 압력으로 치밀화시키고, 이어서 10MPa의 높은 압력을 가하는 소위 2단계 가스압 소결시 경도와 인성이 증진되는 것을 확인할 수 있었다.
구조재료용 요업체로 널리 쓰이는 질화규소 요업체를 2단계 가스압 소결 방식에 의해 치밀화시켰을 때의 효과를 상압조절, 단순 가스압소결 또는 HIP 처리시와 비교하였다. 상압 소결시에는 $1800^{\circ}C$ 이상에서 분해가 일어나지만 질소 가스에 의한 가스압 소결시에는 소결 온도를 더 높일 수 있어서 ${\beta}-Si_3N_4$ 침상 조직의 발달을 이룰 수 있었다. 질소 가스압이 2MPa 정도이면 $1890^{\circ}C$까지도 상압소결시에 비해 분해가 현저히 억제될 수 있어서, 폐기공이 형성될 수 있는 단계까지는 분해만 억제시킬 수 있는 정도의 비교적 낮은 압력으로 치밀화시키고, 이어서 10MPa의 높은 압력을 가하는 소위 2단계 가스압 소결시 경도와 인성이 증진되는 것을 확인할 수 있었다.
Densification behavior of $Si_3N_4$ ceramics by two step gas pressure sintering was compared with pres-sureless sintering one step gas pressure sintering or hot isostatic pressing. While it was difficult to get the highly interlocked ${\beta}-Si_3N_4$ microstructure during the ...
Densification behavior of $Si_3N_4$ ceramics by two step gas pressure sintering was compared with pres-sureless sintering one step gas pressure sintering or hot isostatic pressing. While it was difficult to get the highly interlocked ${\beta}-Si_3N_4$ microstructure during the pressureless sintering due to decomposition above $1800^{\circ}C$ gas pressure sintering could solve this problem by increasing the densification temperature 2MPa of nitrogen pressure was enough to inhibit the decomposition up to $1890^{\circ}C$ and especially two step gas pres-sure sintering applying comparatively low pressure(2MPa) until the closed pore stage and then high pres-sure(10MPa) after pore closure could increase the hardness and the toughness.
Densification behavior of $Si_3N_4$ ceramics by two step gas pressure sintering was compared with pres-sureless sintering one step gas pressure sintering or hot isostatic pressing. While it was difficult to get the highly interlocked ${\beta}-Si_3N_4$ microstructure during the pressureless sintering due to decomposition above $1800^{\circ}C$ gas pressure sintering could solve this problem by increasing the densification temperature 2MPa of nitrogen pressure was enough to inhibit the decomposition up to $1890^{\circ}C$ and especially two step gas pres-sure sintering applying comparatively low pressure(2MPa) until the closed pore stage and then high pres-sure(10MPa) after pore closure could increase the hardness and the toughness.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.