$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High-Level Expression and Characterization of Single Chain Urokinase-type Plasminogen Activator(scu-PA) Produced in Recombinant Chinese Hamster Ovary(CHO) Cells 원문보기

Biotechnology and bioprocess engineering : Bbe, v.6 no.2, 2001년, pp.117 - 127  

Kim, Jung-Seob (MOGAM Biotechnology Institute) ,  Min, Mi-Kyung (MOGAM Biotechnology Institute) ,  Jo, Eui-Cheol (MOGAM Biotechnology Institute)

Abstract AI-Helper 아이콘AI-Helper

The high-level expression of a human single chain urokinase-type plasminogen activator (scu-PA) was achieved by employing a methotrexate (MTX)-dependent gene amplification system in Chinese hamster ovary (CHO) cells. By cotransfecting and coamplifying a scu-PA expression plasmid and dihydrofolate re...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The metaphase chromosomes were treated with RNase A (100 mg/mL in 2X SSC) for 1 h at 37℃. After rinsing three times with 2X SSC, the slides were dehydrated in a series of ethanol solutions of 70%, 85%, and 100% for 5 min, respectively. The chromosomes were then denatured in a 70% formamide solution for 2 min and dehydrated in another series of ethanol washings.
  • In order to evaluate the colinearity between the am-plified gene copy number and the scu-PA expression, the DNA, RNA, and protein quantity in the scu-PA was examined. First, to characterize the genetic structure and copy number of the scu-PA gene inserted into and amplified in the genome of the MGpUK cell lines, a genomic Southern analysis was performed on the finally selected MGpUK-5 cell line (Fig.
  • The scu-PA gene was obtained by a PCR (polymerase chain reaction) of the genomic DNA isolated from SVpUK. The PCR was performed using the sense primer 5WCCAAGCTTG CCACCATGAGAGCCCTG- CTGGCGCGCCTG-3' with a Hindlll enzyme site and antisense primer 5r-TCCCCCGGGTCAGAGGGCCAG- GCCATT-3' with a Smal enzyme site. The PCR products of the scu-PA gene; which were about 1.
  • The influence of the gene amplification on transcription and translation was analyzed by comparing the relationship between the amplified gene copy numbers, the transcript amount, and the secreted protein of the MGpUK-5 cell line (Table 1). With gene amplification up to the stage of 2.
  • In order to examine the location of the scu-PA gene, the metaphase chromosome of the MGpUK-5 cell line was hybridized with a biotin-labeled scu-PA specific probe and treated with fluorescein avidin. The slides were mounted with PI and DAPI, and then analyzed 쵸nd photographed. The figure shows the photographs stained with (a) DAPI and (b) fluorescein avidin, respectively.
  • To detect the location of the amplified scu-PA genes in the chromosome; in situ hybridization was performed on the genomic DNA of the MGpUK-5 cell line using a biotin-labeled specific scu-PA gene probe (Fig. 8). Most of the amplified scu-PA genes were located within one chromosome, yet 5-10% of them were also found in other chromosomes including the previous one.
  • The influence of the gene amplification on transcription and translation was analyzed by comparing the relationship between the amplified gene copy numbers, the transcript amount, and the secreted protein of the MGpUK-5 cell line (Table 1). With gene amplification up to the stage of 2.0 μM of MTX; the scu-PA gene was amplified approximately 150-fold, its transcripts 45-fold, and the scu-PA protein 70-fold; based on two independent experiments. The gene amplification was three and two times higher than the RNA and protein increment, respectively.

대상 데이터

  • A DHFR-deficient mutant of CHO cell line, DG44 [49], was kindly donated by Professor Chasin (Columbia University; USA). The cell line was sub-cultivated in MEM-a (GibcoBRL, Grand Island, NY, USA) containing nucleosides and deoxynucleosides supplemented with 10% FBS (GibcoBRL) at 37℃ in a 5% CO2 air atmosphere.
본문요약 정보가 도움이 되었나요?

참고문헌 (67)

  1. J. Biol. Chem. D. C. Stump 261 1267 1986 10.1016/S0021-9258(17)36085-4 Stump, D. C., M. Thienpont, and D. Collen (1986) Urokinase-related proteins in human urine. Isolation and characterization of single-chain urokinase (prouroki-nase) and urokinase-inhibitor complex.J. Biol. Chem. 261: 1267-1273. 

  2. J. Biol. Chem. S. Kasai 260 12377 1985 10.1016/S0021-9258(17)39035-X Kasai, S., H. Arimura, M. Nishida, and T. Suyama (1985) Proteolytic cleavage of single-chain pro-urokinase induces conformational change which follows activation of the zymogen and reduction of its high affinity for fibrin.J. Biol. Chem. 260: 12377-12381. 

  3. J. Am. Coll. Cardiol. W. D. Weaver 24 1242 1994 10.1016/0735-1097(94)90105-8 Weaver, W. D., J. R. Hartmann, J. L. Anderson, P. S. Reddy, J. C. Sobolski, and A. A. Sasahara (1994) New recombinant glycosylated prourokinase for treatment of patients with acute myocardial infarction. Prourokinase Study Group.J. Am. Coll. Cardiol. 24: 1242-1248. 

  4. J. Vasc. Surg. K. Ouriel 19 1021 1994 10.1016/S0741-5214(94)70214-4 Ouriel, K., C. K. Shortell, J. A. DeWeese, R. M. Green, C. W. Francis, M. V. Azodo, O. H. Gutierrez, J. V. Manzione, C. Cox, and V. J. Marder (1994) A comparison of thrombolytic therapy with operative revascularization in the initial treatment of acute peripheral arterial ischemia.J. Vasc. Surg. 19: 1021-1030. 

  5. J. Biol. Chem. T. C. Wun 257 7262 1982 10.1016/S0021-9258(18)34566-6 Wun, T. C., L. Ossowski, and E. Reich (1982) A proenzyme form of human urokinase.J. Biol. Chem. 257: 7262-7268. 

  6. Hoppe-Sevler’s Z. Physiol. Chem. W. A. Gunzler 363 1155 1982 10.1515/bchm2.1982.363.2.1155 Gunzler, W. A., G. J. Steffens, F. Otting, S. M. Kim, E. Frankus, and L. Flohe (1982) The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain.Hoppe-Sevler’s Z. Physiol. Chem. 363: 1155-1165. 

  7. J. Biol. Chem. V. Novokhatny 267 3878 1992 10.1016/S0021-9258(19)50608-1 Novokhatny, V., L. Medved, A. Mazar, P. Marcotte, J. Henkin, and K. Ingham (1992) Domain structure and interactions of recombinant urokinase type plasminogen activator.J. Biol. Chem. 267: 3878-3885. 

  8. Arch. Biochem. Biophys. S. S. Husain 220 31 1983 10.1016/0003-9861(83)90383-1 Husain, S. S., V. Gurewich, and B. Lipinski (1983) Purification and partial characterization of a single-chain high-molecular-weight form of urokinase from human urine.Arch. Biochem. Biophys. 220: 31-38. 

  9. J. Biol. Chem. A. Ichinose 261 3486 1986 10.1016/S0021-9258(17)35674-0 Ichinose, A., K. Fujikawa, and T. Suyama (1986) The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin.J. Biol. Chem. 261: 3486-3489. 

  10. J. Biol. Chem. H. Kobayashi 266 5147 1991 10.1016/S0021-9258(19)67767-7 Kobayashi, H., M. Schmitt, L. Goretzki, N. Chucholowski, J. Calvete, M. Kramer, W. A. Gunzler, F. Janicke, and H. Graeff (1991) Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (ProuPA).J. Biol. Chem. 266: 5147-5152. 

  11. Thromb. Haemost. J. P. Loza 71 347 1994 10.1055/s-0038-1642441 Loza, J. P., V. Gurewich, M. Johnstone, and R. Pannel (1994) Platelet-bound prekallikrein promotes pro-urokinase-induced clot lysis: a mechanism for targeting the factor XII dependent intrinsic pathway of fibrinolysis.Thromb. Haemost. 71: 347-352. 

  12. J. Clin. Invest. V. Gurewich 73 1731 1984 10.1172/JCI111381 Gurewich, V., R. Pannell, S. Louie, P. Kelley, R. L. Suddith, and R. Greenlee (1984) Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (prourokinase). A studyin vitro and in two animal species.J. Clin. Invest. 73: 1731-1739. 

  13. Thromb. Haemost. C. Zamarron 52 19 1984 10.1055/s-0038-1661127 Zamarron, C., H. R. Lijnen, B. Van Hoef, and D. Collen (1984) Biological and thrombolytic properties of proenzyme and active forms of human urokinase: I. Fibrinolytic and fibrinogenolytic properties in human plasmain vitro of urokinases obtained from human urine or by recombinant DNA technology.Thromb. Haemost. 52: 19-23. 

  14. Biochemistry J. N. Liu 31 6311 1992 10.1021/bi00142a021 Liu, J. N. and V. Gurewich (1992) Fragment E-2 from fibrin substantially enhances pro-urokinase-induced Gluplasminogen activation. A kinetic study using the plasmin-resistant mutant pro-urokinase Ala-158-rpro-UK.Biochemistry 31: 6311-6317. 

  15. Thromb. Haemost. D. Collen 52 27 1984 10.1055/s-0038-1661129 Collen, D., J. M. Stassen, M. Blaber, M. Winkler, and M. Verstraete (1984) Biological and thrombolytic properties of proenzyme and active forms of human urokinase. III. Thrombolytic properties of natural and recombinant urokinase in rabbits with experimental jugular vein thrombosis.Thromb. Haemost. 52: 27-30 

  16. J. Cardiovase. Pharmacol. F. Werf Van de 9 91 1987 Van de Werf, F., I. K. Jang, and D. Collen (1987) Thrombolysis with recombinant human single-chain urokinase-type plasminogen activator (rscu-PA): dose-response in dogs with coronary artery thrombosis.J. Cardiovase. Pharmacol. 9: 91-93. 

  17. Jpn. Heart J. H. Kido 36 61 1995 10.1536/ihj.36.61 Kido, H., K. Hayashi, T. Uchida, and M. Watanabe (1995) Low incidence of hemorrhagic infarction following coronary reperfusion with nasaruplase in a canine model of acute myocardial infarction. Comparison with recombinant t-PA.Jpn. Heart J. 36: 61-79. 

  18. R. B. Credo 561 1997 New Therapeutic Agents in Thrombosis and Thromebolysis Credo, R. B., J. C. Sobolski, W. D. Weaver, and J. R. Hartmann (1997) Recombinant glycosylated pro-urokinase: biochemistry, pharmacology, and early clinical experience. pp. 561-589. In: Sasahara, A. A., and J. Loscalzo (eds.).New Therapeutic Agents in Thrombosis and Thromebolysis. Marcel Dekker, NY, USA. 

  19. FEBS Lett. V. Gurewich 318 317 1993 10.1016/0014-5793(93)80537-5 Gurewich, V., M. Johnstone, J. P. Loza, and R. Pannel (1993) Pro-urokinase and prekallikrein are both associated with platelets. Implications for the intrinsic pathway of fibrinolysis and for therapeutic thrombolysis.FEBS Lett. 318: 317-321. 

  20. J. Biol. Chem. T. C. Wun 257 3276 1982 10.1016/S0021-9258(19)81106-7 Wun, T. C., W. D. Schleuning, and E. Reich (1982) Isolation and characterization of urokinase from human plasma.J. Biol. Chem. 257: 3276-3283. 

  21. Biochemistry L. S. Nielsen 21 6410 1982 10.1021/bi00268a014 Nielsen, L. S., J. C. Hansen, L. Skriver, E. L. Wilson, K. Kaltoft, J. Zeuthen, and K. Dano (1982) Purification of zymogen to plasminogen activator from human glioblartoma cells by affinity chromatography with monoclonal antibody.Biochemistry 21: 6410-6415. 

  22. Biochim. Biophys. Acta. M. Yoshimoto 1293 83 1996 10.1016/0167-4838(95)00228-6 Yoshimoto, M., Y. Ushiyama, M. Sakai, S. Tamaki, H. Hara, K. Takahashi, Y. Sawasaki, and K. Hanada (1996) Characterization of single chain urokinase-type plasminogen activator with a novel amino-acid substitution in the kringle structure.Biochim. Biophys. Acta. 1293: 83-89. 

  23. J. Biol. Chem. S. Kasai 260 12382 1985 10.1016/S0021-9258(17)39036-1 Kasai, S., H. Arimura, M. Nishida, and T. Suyama (1985) Frimary structure of single-chain pro-urokinase.J. Biol. Chem. 260: 12382-12389. 

  24. Gene M. Nagai 36 183 1985 10.1016/0378-1119(85)90084-8 Nagai, M., R. Hiramatsu, T. Kaneda, N. Hayasuke, H. Arimura, M. Nishida, and T. Suyama (1985) Molecular cloning of cDNA coding for human preprourokinase.Gene 36: 183-188. 

  25. DNA P. Jacobs 4 139 1985 10.1089/dna.1985.4.139 Jacobs, P., A. Cravador, R. Loriau, F. Brockly, B. Colau, P. Chuchana, A. van Elsen, A. Herzog, and A. Bollen (1985) Molecular cloning sequencing, and expression inEscherichia coli of human preprourokinase cDNA.DNA 4: 139-146. 

  26. Nucleic Acids Res. A. Riccio 13 2759 1985 10.1093/nar/13.8.2759 Riccio, A., C. Grimaldi, P. Verde, G. Sebastio, S. Boast, and E. Blasi (1985) The human urokinase-plasminogen activator gene and its promoter.Nucleic Acids Res. 13: 2759-2771. 

  27. Semin. Thromb. Hemost. L. Patthy 16 245 1990 10.1055/s-2007-1002677 Patthy, L. (1990) Evolutionary assembly of blood coagulation proteins.Semin. Thromb. Hemost. 16: 245-259. 

  28. Appl. Microbiol. Biotechnol. R. Brigelius-Flohe 36 640 1992 10.1007/BF00183242 Brigelius-Flohe, R., G. Steffens, W. Strassburger, and L. Flohe (1992) High expression vectors for the production of recombinant single-chain urinary plasminogen activator fromEscherichia coli.Appl. Microbiol. Biotechnol. 36: 640-649. 

  29. J. Biol. Chem. L. M. Melnick 265 801 1990 10.1016/S0021-9258(19)40120-8 Melnick, L. M., B. G. Turner, P. Puma, B. Price-Tillotson, K. A. Salvato, D. R. Dumais, D. T. Moir, R. J. Broeze, and G. C. Avgerinos (1990) Characterization of a nonglycosylated single chain urinary plasminogen activator secreted from yeast.J. Biol. Chem. 265: 801-807. 

  30. J. Biol. Chem. L. Nelles 262 5682 1987 10.1016/S0021-9258(18)45629-3 Nelles, L., H. R. Lijnen, D. Collen, and W. E. Holmes (1987) Characterization of recombinant human single chain urokinase-type plasminogen activator mutants produced by site-specific mutagenesis of lysine 158.J. Biol. Chem. 262: 5682-5689. 

  31. Bio/Technol. G. C. Avgerinos 8 54 1990 Avgerinos, G. C., D. Drapeau, J. S. Socolow, J. I. Mao, K. Hsiao, and R. J. Broeze (1990) Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells.Bio/Technol. 8: 54-58. 

  32. Cytotechnology M. Satoh 13 79 1993 10.1007/BF00749934 Satoh, M., S. Hosoi, H. Miyaji, S. Itoh, and S. Sato (1993) Stable production of recombinant pro-urokinase by human lymphoblastoid Namalwa KJM-1 cells: host-cell dependency of the expressed-protein stability.Cytotechnology 13: 79-88. 

  33. Bio/Technol. M. Zang 13 389 1995 Zang, M., H. Trautmann, C. Gandor, F. Asselbergs, C. Leist, A. Fiechter, and J. Reiser (1995) Production of recombinant proteins in Chinese hamster ovary cells using a protein-free cell culture medium.Bio/Technol. 13: 389-392. 

  34. Br. Heart J. D. G. Mathey 48 546 1982 10.1136/hrt.48.6.546 Mathey, D. G., J. Schofer, K. H. Kuck, U. Beil, and G. Kloppel (1982) Transmural, haemorrhagic myocardial infarction after intracoronary streptokinase. Clinical, angiographic, and necropsy findings.Br. Heart J. 48: 546-551. 

  35. Circulation N. U. Bang 79 1391 1989 10.1161/01.CIR.79.6.1391 Bang, N. U. (1989) Tissue-type plasminogen activator mutants. Theoretical and clinical considerations.Circulation 79: 1391-1392. 

  36. Fibrinol. Proteolysis U. Tebbe 11 45 1997 10.1016/S0268-9499(97)80070-7 Tebbe, U., W. A. Gunzler, G. R. Hopkins, T. Grymbowski, and H. Barth (1997) Thrombolytic therapy of acute myocardial infarction with saruphase, a single-chain urokinase-type plasminogen activator (scu-PA) from recombinant bacteria.Fibrinol. Proteolysis 11: 45-54. 

  37. Circulation D. Collen 72 384 1985 10.1161/01.CIR.72.2.384 Collen, D., D. Stump, F. van de Werf, I. K. Jang, M. Nobuhara, and H. R. Lijnen (1985) Coronary thrombolysis in dogs with intravenously administered human prourokinase.Circulation 72: 384-388. 

  38. Proc. Natl. Acad. Sci. USA G. Urlaub 77 4216 1980 10.1073/pnas.77.7.4216 Urlaub, G. and L. A. Chasin (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity.Proc. Natl. Acad. Sci. USA 77: 4216-4220. 

  39. J. Mol. Biol. R. J. Kaufman 159 601 1982 10.1016/0022-2836(82)90103-6 Kaufman, R. J. and P. A. Sharp (1982) Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene.J. Mol. Biol. 159: 601-621. 

  40. Mol. Cell. Biol. R. J. Kaufman 5 1750 1985 10.1128/MCB.5.7.1750 Kaufman, R. J., L. C. Wasley, A. J. Spiliotes, S. I. Gossels, S. A. Latt, G. R. Larsen, and R. M. Kay (1985) Goamplification and coexpression of human tissue-type plasminegen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells.Mol. Cell. Biol. 5: 1750-1759. 

  41. Proc. Natl. Acad. Sci. USA H. R. Gralnick 80 2771 1983 10.1073/pnas.80.9.2771 Gralnick, H. R., S. B. Williams, and M. E. Rick (1983) Role of carbohydrate in multimeric structure of factor VIII/von Willebrand factor protein.Proc. Natl. Acad. Sci. USA 80: 2771-2774. 

  42. Bio/Technol. M. Goto 6 67 1988 Goto, M., K. Akai, A. Murakanu, C. Hashimoto, E. Tsuda, M. Ueda, G. Kawanishi, N. Takahashi, A. Ishimoto, H. Chiba, and R. Sasaki (1988) Production of recombinant human erythropoiwtin in mammalian cells: host-cell dependency of biological activity of the cloned glycoprotein.Bio/Technol. 6: 67-71. 

  43. Methods Enzymol. R. J. Kaufman 185 537 1990 10.1016/0076-6879(90)85044-O Kaufman, R. J. (1990) Selection and coamplification of heterologous genes in mammalian cells.Methods Enzymol. 185: 537-566. 

  44. Bio/Technol. M. J. Page 9 64 1991 Page, M. J. and M. A. Sydenham (1991) High level expression of the humanized monoclonal antibody Campath-1H in Chinese hamster ovary cells.Bio/Technol. 9: 64-68. 

  45. Biotechnol. Bioprocess Eng. B. G. Park 5 123 2000 10.1007/BF02931883 Park, B. G., J. M. Chun, G. T. Lee, I. H. Kim, and Y. H. Jeong (2000) Development of high density mammalian cell culture system for the production of tissue-type plasminogen.Biotechnol. Bioprocess Eng. 5: 123-129. 

  46. Mol. Cell. Biol. R. J. Kaufman 1 1069 1981 10.1128/MCB.1.12.1069 Kaufman, R. J. and R. T. Schimke (1981) Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line.Mol. Cell. Biol. 1: 1069-1076. 

  47. Cell G. R. Stark 57 901 1989 10.1016/0092-8674(89)90328-0 Stark, G. R., M. Debatisse, E. Giulotto, and G. M. Wall (1989) Recent progress in understanding mechanisms of mammalian DNA amplification.Cell 57: 901-908. 

  48. Biotechnol. Bioeng. S. J. Kim 58 73 1998 10.1002/(SICI)1097-0290(19980405)58:1<73::AID-BIT8>3.0.CO;2-R Kim, S. J., N. S. Kim, C. J. Ryu, H. J. Hong, and C. M. Lee (1998) Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure.Biotechnol. Bioeng. 58: 73-84. 

  49. Cell G. Urlaub 33 405 1983 10.1016/0092-8674(83)90422-1 Urlaub, G., E. Kas, A. M. Carothers, and L. A. Chasin (1983) Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells.Cell 33: 405-412. 

  50. Cytotechnology H. G. Kim 17 165 1995 10.1007/BF00749654 Kim, H. G., K. D. Sung, M. S. Ham, K. H. Chung, K. H. Chung, and H. Y. Lee (1995) The optimization of serum-free medium for the production of the scu-PA by the addition of algal extracts.Cytotechnology 17: 165-172. 

  51. Bioproc. Eng. E. C. Jo 19 363 1998 10.1007/PL00009024 Jo, E. C., J. W. Yun, S. I. Jung, K. H. Chung, and J. H. Kim (1998) Performance study of perfusion cultures for the production of single-chain urokinase-type plasminogen activator (scu-PA) in a 2.5 L spin-filter bioreactor.Bioproc. Eng. 19: 363-372. 

  52. Somat. Cell. Mol. Genet. L. Venolia 13 491 1987 10.1007/BF01534491 Venolia, L., G. Urlaub, and L. A. Chasin (1987) Polyadenylation of Chinese hamster dihydrofolate reductase genomic genes and minigenes after gene transfer.Somat. Cell. Mol. Genet. 13: 491-504. 

  53. Mol. Cell. Biol. P. W. Melera 4 38 1984 10.1128/MCB.4.1.38 Melera, P. W., J. P. Davide, C. A. Hession, and K. W. Scotto (1984) Phenotypic expression inEscherichia coli and nucleotide sequence of two Chinese hamster lung cell cDNAs encoding different dihydrofolate reductases.Mol. Cell. Biol. 4: 38-48. 

  54. Mol. Cell. Biol. P. J. Mitchell 6 425 1986 10.1128/MCB.6.2.425 Mitchell, P. J., A. M. Carothers, J. H. Han, J. D. Harding, E. Kas, L. Venolia, and L. A. Chasin (1986) Multiple transcription start sites, DNase I-hypersensitive sites, and an opposite-strand exon in the 5’ region of the CHOdhfr gene.Mol. Cell. Biol. 6: 425-440. 

  55. Biotechnol. Bioprocess Eng. G. Mohr 5 84 2000 10.1007/BF02931877 Mohr, G., A. Preininger, M. Himmelspach, B. Plaimauer, C. Arbesser, H. York, F. Dorner, and U. Schlokat (2000) Permanent mycoplasma removal from tissue culture cells: a genetic approach.Biotechnol. Bioprocess Eng. 5: 84-91. 

  56. Biotechnol. Bioprocess Eng. T. Kida 5 92 2000 10.1007/BF02931878 Kida, T., S. Fujishima, M. Matsumura, and P. C. Wang (2000) Immobilization of rat kidney glomerular mesangial cell and its coculture with glomerular epitherial cell.Biotechnol. Bioprocess Eng. 5: 92-93. 

  57. Thromb. Haemost. C. Kluft 41 365 1979 10.1055/s-0038-1646786 Kluft, C. (1979) Studies on the fibrinolytic system in human plasma: quantitative determination of plasminogen activators and proactivators.Thromb. Haemost. 41: 365-333. 

  58. Thromb. Haemost. A. Corti 56 407 1986 10.1055/s-0038-1661692 Corti, A., M. L. Nolli, and C. Cassani (1986) Differential detection of single-chain and two-chain urokinase-type plasminogen activator by a new immunoadsorbent-amidolytic assay (IAA).Thromb. Haemost. 56: 407-410. 

  59. Genet. Anal. Tech. Appl. P. Lichter 8 24 1991 10.1016/1050-3862(91)90005-C Lichter, P., A. L. Boyle, T. Cremer, and D. C. Ward (1991) Analysis of genes and chromosomes by nonisotopicin situ hybridization.Genet. Anal. Tech. Appl. 8: 24-35. 

  60. Cell. Dev. Biol. M. Satoh 26 1101 1990 10.1007/BF02624447 Satoh, M., S. Hosoi, and S. Sato (1990) Chinese hamster overy cells continuously secrete a cysteine endopeptidase.In Vitro.Cell. Dev. Biol. 26: 1101-1104. 

  61. J. Biol. Chem. R. J. Kaufman 268 6352 1988 10.1016/S0021-9258(18)68793-9 Kaufman, R. J., L. C. Wasley, and A. J. Dorner (1988) Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells.J. Biol. Chem. 268: 6352-6362. 

  62. Biochem. Biophys. Res. Commun. E. J. Kentzer 171 401 1999 10.1016/0006-291X(90)91407-J Kentzer, E. J., A. Buko, G. Menon, and V. K. Sarin (1999) Carbohydrate composition and presence of a fucosepretein linkage in recombinant human pro-urokinase.Biochem. Biophys. Res. Commun. 171: 401-406. 

  63. Thromb. Haemost C. Lenich 68 539 1992 10.1055/s-0038-1646314 Lenich, C., R. Pannell, J. Henkin, and V. Gurewich (1992) The influence of glycosylation on the catalytic and fibrinolytic properties of pro-urokinase.Thromb. Haemost 68: 539-544. 

  64. Nature A. Stief 341 343 1989 10.1038/341343a0 Stief, A., D. M. Winter, W. H. Stratling, and A. E. Sippel (1989) A nuclear DNA attachment element mediates elevated and position-independent gene activity.Nature 341: 343-345. 

  65. Biochemistry D. Klehr 30 1264 1991 10.1021/bi00219a015 Klehr, D., K. Maass, and J. Bode (1991) Scaffold-attached regions from the human interferon beta domain can be used to enhance the stable expression of genes under the control of various promoters.Biochemistry 30: 1264-1270. 

  66. Cell D. R. Dorer 77 993 1994 10.1016/0092-8674(94)90439-1 Dorer, D. R. and S. Henikoff (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing inDrosophila.Cell 77: 993-1002. 

  67. Mel. Cell Biol. M. Kalos 15 198 1995 10.1128/MCB.15.1.198 Kalos, M. and R. E. Fournier (1995) Position-independent transgene expression mediated by boundary elements from the apolipoprotein B chromatin domain.Mel. Cell Biol. 15: 198-207. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로