$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고함량 RNA 효모 변이주의 선별 및 고농도세포 유가배양
Selection of Yeast Mutant Strain with High RNA Content and Its High Cell-Density Fed-Batch Culture. 원문보기

한국미생물·생명공학회지 = Korean journal of microbiology and biotechnology, v.30 no.1, 2002년, pp.68 - 72  

김재범 (동의대학교 생명공학과) ,  권미정 (동의대학교 생명공학과) ,  남희섭 ((주)농심 기술개발연구소) ,  김재훈 ((주)농심 기술개발연구소) ,  남수완 (동의대학교 생명공학과)

초록
AI-Helper 아이콘AI-Helper

RNA 함량이 증가되고, 증식속도가 더 빠른 효모 변이주를 선별하기 위해, 모균주 Saccharomyces cerevisiae MTY62 세포에 화학적 돌연변이제인 ethylmethane sulfonate를 처리하여, YPD 배지에서는 잘 자라고 KCl 함유 배지에서는 자라지 않는 변이주들을 선별하였다. 이 변이주들 중 시험관 및 플라스크 배양을 통해 균체농도와 RNA 함량이 모균주 MTY62에 비해 각각 1.5배, 1.3배 증가한 M40-10 변이주를 최종적으로 선별하였다. 변이주 M40-l0을 발효조 회분배양한 결과, 최대비증식속도는 $0.38 h^{-1}$ , RNA 농도는 3210 mg-RNA/1, RNA 함량은 183mg-RNA/g-DCW 값을 보여, 모균주에 비해 각각 23%, 15%, 12%씩 증가하였다. M40-10 변이주를 간헐적 유가배양한 결과, 최대 균체농도는 35.6 g-DCW/1을, 최대 RNA 농도는 5677mg-RNA/l을, RNA함량은 160 mg-RNA/g-DCW을 나타내어 모균주보다 우수하였다. 일정속도의 유가배양에서도 M40-10 변이주의 최대 균체농도는 46.4g-DCW/1, RNA 농도는 6270mg-RNA/1, RNA 함량은 135mg-RNA/g-DCW을 보였다. 이들 유가배양에서 배양 중반기인 20시간 전후에서는 모균주에 비해 변이주의 세포농도는 30%, RNA 농도는 10% 정도 증가되었다. 또한 유가배양 말기까지도 RNA 분해는 거의 일어나지 않아, M40-10 변이주는 산성 RNase 활성이 크게 감소한 변이주임을 알 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

To obtain a yeast mutant with high RNA content and high growth rate, Saccharomyces cerevisiae MTY62 was mutated with ethylmethane sulfonate. Among the selected mutants that were sensitive to the high concentration of KCl, M40-10 strain was finally selected due to its rapid cell growth and high RNA c...

주제어

참고문헌 (22)

  1. Braun, B R, D. L. Riggs, G. A. Kassavetis, and E. P. Geiduschek. 1989. Multiple stages of protein-DNA interaction in the assembly of transcription complexes on Saccharomyces cerevisiae 5S ribosomal RNA genes. Proc. Natl. Acad. Sci. USA. 86: 2530-2534. 

  2. Christopher, W. L. 1991. Classical mutagenesis techniques. Method. Enzymol. 194: 273-281. 

  3. Doi, S., S. Akiyama, and G. Nakao. 1983. Development of yeast strain with high ribonucleic acid. Kakkai Chuppan Center, Tokyo, 159-169. 

  4. Donovan, D. M. and N. J. Pearson. 1986. Transcriptional regulation of ribosomal proteins during a nutritional upshift in Saccharomyces cerevisiae. Mol. Cell. Bioi. 6: 2429 2435. 

  5. Gorenstein, C. and J. R. Wamer. 1977. Synthesis and turnover of ribosomal proteins in the absence of 60S subunit assembly in Saccharomyces cerevisiae. Mol. Gen. Genet. 157: 327-332. 

  6. Herruer, M. H., W. H. Mager, L. P. Woudt, R. T. Nieuwint, G. M. Wassenaar, P. Groeneveld, and R. J. Planta. 1987. Transcriptional control of yeast ribosomal protein synthesis during carbon-source upshift. Nucleic Acids Res. 15: 10133-10144. 

  7. Ju, Q. and J. R. Warner. 1994. Ribosome synthesis during the growth cycle of Saccharomyces cerevisiae. Yeast. 10: 151- 157. 

  8. Kief, D. R. and J. R Wamer. 1981. Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol. Gen. Genet. 1: 1007-1015. 

  9. Kim, J. R, M. J. Kwon, H. S. Nam, J. H. Kim, and S. W. Nam. 2001. Fed-batch fermentation of high-content RNA yeast by using molasses medium. Kor. J Appl. Microbial. Biotechnol. 29: 234-239. 

  10. Kim, J. S., J. W. Kim, W. Shim, B. C. Min, J. W. Kim, K H. Park, and U. H. Pek. 1999. Development of Saccharomyces cerevisiae strains with high RNA content. Kor. J Food. Sci. Technol. 31: 465-474. 

  11. Kim, S. Y, H. S. Nam, and H. J. Lee. 1996. Change of yeast growth and its RNA content in fed-batch fermentation. Kor. J Food Sci. Technol. 28: 122-126. 

  12. Klekamp, M. S. and P. A. Wei!. 1982. Specific transcription of homologous class III genes in yeast-soluble cell-free extracts. J BioI. Chem. 257: 8432-8441. 

  13. Miller, G. L., R Blum, W. E. Glennon, and A. L. Burton. 1960. Measurement of carboxymethyl cellulase activity. Anal. Biochem. 2: 127-132. 

  14. Nagodawithana, T. 1992. Yeast derived flavors and flavor enhancers and their probable mode of action. Food Technol. 11: 139-144. 

  15. Riggs, D. L. and M. Nomura. 1990. Specific transcription of Saccharomyces cerevisiae 35 S rRNA by RNA polymerase I in vitro. J Biol Chem. 265: 7596-7603. 

  16. Schneider, W. C. 1957. Determination of nucleic acids in tissues by pentose analysis. Methods Enzymol. 3: 680-684. 

  17. Schultz, M. C., S. Y Choe, and R. H. Reeder. 1991. Specific initiation by RNA polymerase I in a whole-cell extract from yeast. Proc. Natl. Acad. Sci. USA. 88: 1004-1008. 

  18. Shetty, J. K, R C. Weaver, and J. E. Kinsella. 1980. A rapid method for the isolation of ribonuclease from yeast (Saccharomyces carlsbergensis). Biochem. J 189: 363-366. 

  19. Shetty, J. K, R. C. Weaver, and J. E. Kinsella. 1980. Ribonuclease isolated from yeast (Saccharomyces carlsbergensis): characterization and properties. Biotechnol. Bioeng. 23: 953964. 

  20. Udem, S. A. and J. R Warner. 1972. Ribosomal RNA synthesis in Sacchromyces cerevisiae. J Mol. BioI. 65: 227-242. 

  21. Waldron, C. 1977. Synthesis of ribosomal and transfer ribonucleic acids in yeast during a nutritional shift-up. J Gen. Microbiol. 98: 215-221. 

  22. Waldron, C. and F. Lacroute. 1975. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J Bacteriol. 122: 855-865. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로