$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

생물계면활성제를 이용한 Phenanthrene의 생물학적 처리

Enhanced Bioremediation of Phenanthrene Using Biosurfactant

초록

본 연구에서는 생물계면활성제와 비이온계 계면활성제 용액의 pH 변화가 phenanthrene의 용해도 증가에 미치는 영향을 수용액 시스템에서 조사하고자 하였으며, PAHs-분해균주가 phenanthrene을 분해할 경우 이러한 용해도의 변화가 분해균주의 활성과 전체 분해율에 주는 영향을 파악하고자 하였다. 생물계면활성제 rhamnolipid와 비이온계 합성계면활성제 tween 80의 phenanthrene에 대한 solubilization capacity를 조사하기 위한 회분식 실험의 결과 MSR (Molar Solubilization Ratio)은 각각 0.0425와 0.1449로 나타났으며, 생물계면활성제 첨가로 인한 phenanthrene olubilization 기작이 평형에 도달하기 위한 시간은 24시간 정도로 나타났다. 임계마이셀 농도의 약 4.3배에 해당하는 240ppm의 생물계면활성제를 첨가하였을 경우, 증류수만을 첨가하였을 경우 용해도보다 약 9배 이상 phenanthrene의 용해도가 증가하였다. 또한, 생물계면활성제의 pH 변화가 phenanthrene solubility에 주는 영향을 살펴본 결과, 가장 높은 용해도를 나타낸 pH는 240ppm과 2000ppm의 생물계면활성제를 첨가한 경우 모두 pH 범위 4.5-5.5로 나타났다. 이는 rhamnolipid의 친수성 부분의 음전하 세기가 pH에 따라 달라지는 현상에 기인한 것으로 보여진다. 생물계면 활성제가 존재하지 않는 조건에서, pH의 변화가 phenanthrene 분해균주인 CRE7의 생장률과 분해능에 주는 영향을 조사한 결과, 최대 비성장률은 pH 6에서 나타났지만, pH 5-7 범위에서 크게 변화하지 않았다. 이러한 비성장률의 차이가 분해능에 미치는 영향을 확인한 결과, 높은 비성장률은 결과적으로 높은 분해율을 나타내는 것으로 보여졌다. 생물계면활성제를 첨가한 경우, 생물계면활성제를 첨가하지 않은 실험결과에 비교해 볼 때, pH 4를 제외하고 전체적으로 비성장률이 증가한 경향을 보였으며, 전체 분해율도 증가하는 추세를 나타내었다. 생물계면활성제의 첨가로 인해 pH 5에서의 비성장률은 첨가하지 않았을 경우에 비해 약 1.5배 증가하였으며, 이는 생물계면활성제가 phenanthrene의 용해도를 pH 5에서 약 5배이상 증가시킨 것과 비교하여 볼 때, 그 증가폭이 적다고 할 수 있다. 이러한 결과는 생물계면활성제의 첨가로 인해 마이셀 구조안으로 용해되어진 phenanthrene 의 경우 분해균주의 접근이 용이하지 않아 분해되기 어렵다는 것을 말해주며, pH에 따라 나타나는 서로 다른 구조의 phenanthrene-rhamnolipid의 집합체는 생물학적 이용도 또한 달라질 수 있음을 의미한다.

Abstract

This study was carried out 1) to investigate the pH effect on solubilization of phenanthrene by biosurfactant in aqueous system and 2) to evaluate the pH effect on the biodegradation rate of phenanthrene in the presence and the absence of the biosurfactant by phenanthrene degraders. Tween 80, which is a chemically synthesized surfactant, showed greater solubilizing capacity than rhamnolipid. The solubilization capacity can be expressed as a MSR(molar solubilization ratio=moles of organic compounds solubilized per mole of surfactant). The calculated MSR of Tween 80 and rhamnolipid were 0.1449 and 0.0425 respectively. The kinetic study of phenanthrene solubilization by rhamnolipid showed that solubilization mechanism could reach equilibrium within 24 hours. Addition of 240 ppm rhamnolipid solution, which concentration is 4.3 times of Critical Micelle Concentration(CMC), caused 9 times solubility enhancement compared to water solubility. The highest solubilities were detected around a pH range of 4.5-5.5. Changes in apparent solubility with the changes in pH are possibly related to the fact that the rhamnolipid, an anionic surfactant, can form different structures depending on the pH. Two biodegradation experiments were performed in the absence and the presence of rhamnolipid, with the cell growth investigated using a spread plate method. The specific growth rates at pH 6 and 7 were higher than at the other pH, and the HPLC analysis data, for the total phenanthrene loss, confirmed the trends in the $\mu$(specific growth rate) values. In presence of rhamnolipid, maximum $\mu$ values shifted from around pH 5 which showed maximum enhancement of solubility in the abiotic experiment, compared to the $\mu$ values obtained without the biosurfactant. In this study, the increase in the observed specific grow rate(1.44 times) was not as high as the increase in solubilization(5 times). This was supported by the fact all the solubilized phenanthrene is not bioavailable to microorganisms.

저자의 다른 논문

참고문헌 (19)

  1. APHA;AWWA;WEF , Standard method for the examination of water and wastewater(18th ed.) / v.,pp.9/34-9/40, 1992
  2. Influence of cation type, ionic strength, and pH on solubilization and mobilization of residual hydrocarbon by a biosurfactant , Bai,G.Y.;Brusseau,M.L.;Miller,R.M. , J. of Cont. Hydrol. / v.30,pp.265-279, 1998
  3. Electron microscopy of rhamnolipid (biosurfactant) morphology: Effect of pH, cadmium, and octadecane , Champion,J.T.;Gilery,J.C.;Lamparski,H.;Petterer,J.;Miller,R.M. , J. of Colloid and Interface Science / v.170,pp.569-574, 1995
  4. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions , Edward,D.A.;Richard,G.L.;Zhongbao,L. , Environ. Sci. Technol. / v.25,pp.127-131, 1991
  5. Competitive substrate bioegradation during surfactantenhanced remediation , Goudar,C.;Strevett,K.;Grego,J. , J. of Environ. Eng. / v.,pp.1142-1148, 1999
  6. The pH-sensitive conversion of molecular aggregated of rhamnolipid biosurfactant , Ishigami,Y.;Gama,Y.;Nagahora,H. , Chemistry Letters / v.5,pp.763-766, 1987
  7. The significance of polycyclic aromatic hydrocarbons as environmental carcinogens , Jacob,J. , Pure & Appl. Chem. / v.68,pp.301-303, 1996
  8. Enhanced removal of trapped non-aqueous phase liquids from saturated soil using surfactants solutions , Josee,F.;William,A.J.;Michael,A.A. , J. Cont. Hydrol. / v.24,pp.247-252, 1997
  9. Organic pollutant sorption in aquatic systems , Karichoff,S.W. , J. Hydraulic Chem. / v.110,pp.707-713, 1984
  10. Enhanced octadecane dispersion and biodegradation by a Pseudomonas aeruginosa rhamnolipid surfactant (biosurfactant) , Kurt,D.P.;Linda,M.A.;Walter,J.W. , Environ. Sci. Technol. / v.27,pp.2332-2340, 1993
  11. Inhibition of phenanthrene mineralization by nonionic surfactants in soilwater systems , Laha,S.;Luthy,R.G. , Environ. Sci. Technol. / v.25,pp.1920-1930, 1991
  12. Bacterial degradation of emulsan , Shoham,Y.;Rosenberg,M.;Rosenberg,E. , Appl. Environ. Microbiol. / v.46,pp.573-579, 1983
  13. Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems , Shonali,L.;Richard,G.L. , Biotechnol. Bioeng. / v.40,pp.1367-1372, 1992
  14. Degradation of polynuclear aromatic hydrocarbons in the presence of synthetic surfactants , Tiehm,A. , Appl. Environ. Microbiol. / v.60,pp.258-263, 1994
  15. Surfactant-Enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactures gas plant soil , Tiehm,A.;Stiever,M.;Werner,P.;Frimmel,F.H. , Environ. Sci. Technol. / v.31,pp.2560-2576, 1997
  16. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review , Wilson,S.C.;Jones,K.C. , Environ. pollut. / v.80,pp.229-249, 1993
  17. Emulsifying and surface active agents from Corynevacterium hydrocarbocalstus , Zajic,J.E.;Guignard,H.;Gerson,D.F. , Biotechnol. Bioeng. / v.19,pp.1258-1301, 1997
  18. Enhanced octadecane dispersion and biodegradation by a Pseudomonas aeruginosa rhamnolipid surfactant (biosurfactant) , Zhang,Y.;Miller,R. , Appl. Environ. Microbiol. / v.58,pp.3276-3282, 1992
  19. Effect of rhamnolipid on the dissolution, bioavailability, and biodegradation of phenanthrene , Zhang,Y.;Maier,W.J.;Miller,R. , Environ. Sci. Technol. / v.31,pp.2211-2217, 1997

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일