$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Numerical Calculation of Minimum Ignition Energy for Hydrogen and Methane Fuels 원문보기

KSME international journal, v.18 no.5, 2004년, pp.838 - 846  

Kim, Hong-Jip (Korea Aerospace Research Institute) ,  Chung, Suk-Ho (School of Mechanical and Aerospace Engineering, Seoul National University) ,  Sohn, Chae-Hoon (Department of Aerospace Engineering, Chosun University)

Abstract AI-Helper 아이콘AI-Helper

Minimum ignition energies of hydrogen/air and methane/air mixtures have been investigated numerically by solving unsteady one-dimensional conservation equations with detailed chemical kinetic mechanisms. Initial kernel size needed for numerical calculation is a sensitive function of initial pressure...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Based on the relation between quenching distance and minimum ignition energy (Lewis and von Elbe, 1987), the present study is to test a simple method of determining minimum ignition energy numerically by tilizing quenching distance as initial kernel size for energy input. Although the complex modeling of ignition processes can be found in some literature (Sher et al, 1992 ; Akram, 1996), this study adopts simple models and one-dimensional approach, focusing on the macroscopic prediction of minimum ignition energy. This approach is still alive since it has many advantages (Akram and Lundgren, 1996).
  • , 1952). Based on the relation between quenching distance and minimum ignition energy (Lewis and von Elbe, 1987), the present study is to test a simple method of determining minimum ignition energy numerically by tilizing quenching distance as initial kernel size for energy input. Although the complex modeling of ignition processes can be found in some literature (Sher et al, 1992 ; Akram, 1996), this study adopts simple models and one-dimensional approach, focusing on the macroscopic prediction of minimum ignition energy.
  • 7 demonstrate satisfactory agreement in the minimum ignition energy between the numerical and the experimental results (Lewis and von Elbe, 1987). These results for the effects of pressure and equivalence ratio substantiate the validity of the adoption of quenching distance as the radius of ignition energy source in determining the minimum ignition energy numerically.
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. Akram, M., 1996, 'Two Dimensional Model for Spark Discharge Simulation in Air,' AIAA Journal, Vol. 34, pp. 1835-1845 

  2. Akram, M. and Lundgren, E., 1996, 'The Evolution of Spark Discharges in Gases : I. Macroscopic Models,' Journal of Physics D : Applied Physics, Vol. 29, pp. 2129-2136 

  3. Au, S., Haley, R. and Smy, P. R., 1992, 'The Influence of the Igniter-Induced Blast Wave Up-on the Initial Volume and Expansion of the Flame Kernel,' Combustion and Flame, Vol. 88, pp. 50-60 

  4. Calcote, H. F., Gregory, C. A. Jr., Barnett, C. M. and Gilmer, R. B., 1952, 'Spark Ignition,' Industrial and Engineering Chemistry, Vol. 44, pp. 2656-2662 

  5. Friedman, R., 1949, 'The Quenching of Laminar Oxyhydrogen Flames by Solid Surfaces,' Proceedings of the Combustion Institute, Vol. 3, pp. 110-120 

  6. Gaydon, A. G. and Wolfhard, H. G., 1979, Flames, Their Structure, Radiation, and Temperature, 4th Ed., John Wiley & Sons, New York, P. 25 

  7. Kailasanath, K., Oran, E. AND Boris, J., 1982, 'A Theoretical Study of the Ignition of Premixed Gases,' Combusition and Flame, Vol. 47, pp. 173-190 

  8. Kee, R. J, ;Warnatz, J. and Miller, J. A., 1983, A Fortran Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients, Sandia National Laboratories Report No. SAND83-8209 

  9. Kee, R. J., Rupley, F. M. and Miller, J. A., 1989, CHEMKIN-II : A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Laboratories Report No. SAND89-8009 

  10. Kim, S. -K., Lee, J. K., Kim, Y. -M., Ahn, J. H., 2002a, 'Numerical Modeling of Combustion Processes and Pollutant Formations in Direct-Injection Diesel Engines,' KSME International Journal, Vol. 16, No. 7, pp. 1009-1018 

  11. Kim, H., Lim, Y., Min, K. and Lee, D., 2002b, 'Investigation of Autoignition of Propane and n-Butane Blends Using a Rapid Compression Machine,' KSME International Journal, Vol. 16, No. 8, pp. 1127-1134 

  12. Lewis, B. and von Elbe, G., 1987, Combustion, Flames and Explosion fo Gases, 3rd Ed., Academic Press, Orlando, p. 333 

  13. Maas, U. and Warnatz, J., 1988, 'Ignition Processes in Hydrogen-Oxygen Mixtures,' Combustion and Flame, Vol. 74, pp. 53-69 

  14. Moorhouse, J., Williams, A. and Maddison, A. E., 1974, 'An Investigation of the Minimum Ignition Energies of Some $C_1$ to $C_7$ Hydrocarbons,' Combustion and Flame, Vol. 23, pp. 203-213 

  15. Peters, N., 1991, 'Flame Calculations with Reduced Mechanisms - An Outline,' in Reduced Kinetic Mechanisms for Applications in Combustion Systems (N. Peters and B. Rogg Eds.), Vol. 15 of Lecture Notes in Physics, Springer-Verlag, pp. 3-14 

  16. Rose, H. E. and Priede, T., 1958, 'Ignition Phenomena in Hydrogen-Air Mixtures,' Proceedings of the Combustion Institute, Vol. 7, pp. 436-445 

  17. Sher, E., Ben-Ya'ish, J. and Kravchik, T., 1992, 'On the Birth of Spark Channels,' Combustion and Flame, Vol. 89, pp. 186-194 

  18. Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, Jr. W. C., Lissianski, V. V. and Qin, Z., 2000, GRI-Mech Website http://www.me.berkeley.edu/gri_mech/ 

  19. Smooke, M. D., Miller, J. A. and Kee, R. J., 1983, 'Determination of Adiabatic Flame Speeds by Boundary Value Methods,' Combustion Science and Technology, Vol. 34, pp. 79-90 

  20. Sohn, C. H. and Chung, S. H., 1995, 'A Numerical Study on Normal and Abnormal Combustion in Hydrogen Premixture,' Transactions of Korean Society of Mechanical Engineers, Vol. 19, pp. 1989-1998 (in Korean) 

  21. Thiele, M., Warnatz, J., Dreizler, A., Lindenmaier, S., Schieszl, R., Maas, U., Grant, A. and Ewart, P., 2002, 'Spark ignited Hydrogen/air Mixtures : Two Dimensional Detailed Modeling and Laser Based Diagnostics,' Combustion and flame, Vol. 128, pp. 74-87 

  22. Williams, F. A., 1985, Combustion Theory, 2nd Ed., Addison-Wesley, Menlo Park, CA, p. 268 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로