$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Game theory is a method of mathematical analysis developed to study the decision making process. In 1928, Von Neumann mathematically proved that every two-person, zero-sum game with many pure finite strategies for each player is deterministic. In the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, Kauffman proposed the NK model to analyze coevolutionary dynamics between different species. He showed how coevolutionary phenomenon reaches static states and that these states are either Nash equilibrium or ESS in game theory. Since studies concerning coevolutionary phenomenon were initiated, there have been numerous other researchers who have developed coevolutionary algorithms. In this paper we propose a new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) and we confirm that this algorithm can be a solution of evolutionary problems by searching the ESS. To evaluate this newly designed approach, we solve several test Multiobjective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by the coevolutionary algorithm and analyze the optimization performance of our algorithm by comparing the performance of our algorithm with that of other evolutionary optimization algorithms.

저자의 다른 논문

참고문헌 (60)

  1. L. A. Dugatkin;H. K. Reeve(Eds.) , Game Theory and Animal Behavior / v.,pp., 1998
  2. J. Von Neumann;O. Morgenstern , The Theory of Games and Economic Behavior / v.,pp., 1944
  3. Noncooperative games , J. F. Nash , Annals of Mathematics / v.54,pp.289, 1951
  4. J. F. Nash , Essays on Game Theory / v.,pp., 1997
  5. Evolution and the theory of games , R. C. Lewontin , Journal of Theoretical Biology / v.1,pp.382-403, 1961
  6. An optimal strategy of evolution , L. B. Slobodkin;A. Rapoport , Quarterly Review of Biology / v.49,pp.181-200, 1974
  7. The logic of animal conflict , J. Maynard Smith;G. R. Price , Nature / v.246,pp.15-18, 1973
  8. Co-evolution to the edge of chaos: Coupled fitness landscapes, poised states, and co-evolutionary avalanches , S. A. Kauffman;S. Johnsen , Artificial Life Ⅱ / v.,pp.325-369, 1991
  9. New methods for competitive coevolution , C. D. Rosin;R. K. Belew , Evolutionary Computation / v.5,pp.1-29, 1997
  10. J. Maynard Smith , Evolution and the Theory of Games / v.,pp., 1982
  11. The evolution of strategies in the iterated prisoner’s dilemma , R. Axelrod;L. Davis(Ed.) , Genetic Algorithms and Simulated Annealing / v.,pp.32-41, 1987
  12. Competitive environments evolve better solutions for complex tasks , P. J. Angeline;J. B. Pollack , Proc. of the 5th Int. Conf. on Genetic Algorithms / v.,pp.264-270, 1993
  13. R. Weber , Mathematics for operational research / v.,pp., 2001
  14. Evolutionary stability: One concept, several meanings , S. Lessard , Theoretical Population Biology / v.37,pp.159-170, 1990
  15. The essential properties of evolutionary stability , G. W. Rowe;I. F. Harvey;S. F. Hubbard , Journal of Theoretical Biology / v.115,pp.269-285, 1985
  16. S. H. Strogatz , Nonlinear Dynamics and Chaos / v.,pp., 1994
  17. “Coevolutionary computation , J. Paredis , Artificial Life / v.2,pp.355-379, 1995
  18. Steps towards coevolutionary classification neural networks , J. Paredis , Artificial Life Ⅳ / v.,pp.102-108, 1994
  19. Coevolutionary process control , J. Paredis , Proc. of Int. Conf. on Artificial Neural Networks and Genetic Algorithms / v.,pp.394-398, 1997
  20. Coevolutionary constraint satisfaction , J. Paredis , Proc. of PPSN-Ⅲ, Lecture Notes in Computer Science 866 / v.,pp.46-55, 1994
  21. The symbiotic evolution of solutions and their representations , J. Paredis , Proc. of the 6th Int. Conf. on Genetic Algorithms / v.,pp.359-365, 1995
  22. Symbiotic coevolution for epistatic problems , J. Paredis;W. Wahlser(Ed.) , Proc. of European Conf. on Artificial Intelligence / v.,pp.228-232, 1996
  23. Coevolving cellular automata: Be aware of the red queen! , J. Paredis , Proc. of the 7th Int. Conf. on Genetic Algorithms / v.,pp.393-400, 1997
  24. Computer Simulations of Genetic Adaptation: Parallel Subcomponent Interaction in a Multilocus Model , P. Grosso , Ph. D. dissertation, University of Michigan / v.,pp., 1985
  25. Punctuated equilibria: A parallel genetic algorithm , J. Cohoon;S. Hegde;W. Martin;D. Richards , Proc. of the 2nd Int. Conf. on Genetic Algorithms / v.,pp.148-154, 1987
  26. A parallel genetic algorithm , C. Petty;M. Leuze;J. Grenfenstette , Proc. of the 2nd Int. Conf. on Genetic Algorithms / v.,pp.155-161, 1987
  27. Distributed genetic algorithms , R. Tanese , Proc. of the 3rd Int. Conf. on Genetic Algorithms / v.,pp.434-439, 1989
  28. Genitor Ⅱ: A distributed genetic algorithm , D. Whitley;T. Starkweather , Journal of Experimental and Theoretical Artificial Intelligence / v.2,pp.189-214, 1990
  29. A coevolutionary approach to learning sequential decision rules , M. A. Potter;K. A. De Jong;J. J. Grefenstette , Proc. of the 6th Int. Conf. on Genetic Algorithms / v.,pp.366-372, 1995
  30. A cooperative coevolutionary approach to function optimization , M. A. Potter;K. A. De Jong , Proc. of Parallel Problem Solving from Nature / v.,pp.249-257, 1994
  31. A coevolutionary approach to learning sequential decision rules , M. A. Potter;K. A. De Jong;J. J. Grefenstette , Proc. of the 6th Int. Conf. on Genetic Algorithms / v.,pp.366-372, 1995
  32. Comparison of multiobjective evolutionary algorithms: Empirical results , E. Zitzler;K. Deb;L. Thiele , Proc. of Genetic and Evolutionary Computation Conf. Workshop Program / v.,pp.121-122, 1999
  33. Multiobjective optimization using evolutionary algorithms - A comparative case study , E. Zitzler;L. Thiele;A. E. Eiben(ed.);T. Beack(ed.);M. Schoenauer(ed.);H. -P. Schwefel(ed.) , Proc. of 5th Int. Conf. on Parallel Problem Solving from Nature / v.,pp.292-301, 1998
  34. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications , E. Zitzler , Ph. D. dissertation, The Swiss Federal Institute of Technology / v.,pp., 1999
  35. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach , E. Zitzler , IEEE Trans. on Evolutionary Computation / v.3,pp.257-271, 1999
  36. Multi-objective genetic algorithms: Problem difficulties and construction of test functions , K. Deb , Technical Report No. CI-49/98 / v.,pp., 1998
  37. J. L. Cohon , Multiobjective Programming and Planning / v.,pp., 1978
  38. R. E. Steuer , Multiple Criteria Optimization: Theory, Computation, and Application / v.,pp., 1986
  39. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach , E. Zitzler;L. Thiele , IEEE Trans. on Evolutionary Computation / v.3,pp.257-271, 1999
  40. Multicriterion optimization in structural design , J. Koski;E. Atrek(ed.);R. H. Gallagher(ed.);K. M. Ragsdell(ed.);O. C. Zienkiewicz(ed.) , New Directions in Optimum Structural Design / v.,pp.483-503, 1984
  41. Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms , J. D. Schaffer , Ph. D. dissertation, Vanderbilt University / v.,pp., 1984
  42. Multiple objective optimization with vector evaluated genetic algorithms , J. D. Schaffer , Proc. of Int. Conf. on Genetic Algorithms and Their Applications / v.,pp.93-100, 1985
  43. Multiobjective optimization using the niched Pareto genetic algorithm , J. Horn;N. Nafpliotis , IlliCAL Report 93005 / v.,pp., 1993
  44. Compaction of symbolic layout using genetic algorithms , M. P. Fourman , Proc. of the 1st Int. Conf. on Genetic Algorithms / v.,pp.141-153, 1985
  45. A variant of evolution strategies for vector optimization , F. Kursawe;H.-P. Schwefel(ed.);R. Maenner(ed.) , Proc. of Parallel Problem Solving from Nature, Lecture Notes in Computer Science 496 / v.,pp.193-197, 1991
  46. Genetic search strategies in multicriterion optimal design , P. Hajela;C.-Y. Lin , Struct. Optim. / v.4,pp.99-107, 1992
  47. Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part I: A unified formulation , C. M. Fonseca;P. J. Fleming , IEEE Trans. on Systems, Man, and Cybernetics Part A: Systems and Humans / v.28,pp.26-37, 1998
  48. D. E. Goldberg , Genetic Algorithms in Search, Optimization and Machine Learning / v.,pp., 1989
  49. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization , C. M. Fonseca;P. J. Fleming , Proc. of the 5th Int. Conf. on Genetic Algorithms / v.,pp.416-423, 1993
  50. An overview of evolutionary algorithms in multiobjective optimization , C. M. Fonseca;P. J. Fleming , Evolutionary Computation / v.3,pp.1-16, 1995
  51. Genetic algorithms with sharing for multi-modal function optimization , D. E. Goldberg;J. J. Richardson , Proc. of the 2nd Int. Conf. on Genetic Algorithms / v.,pp.41-49, 1987
  52. A niched Pareto genetic algorithm for multiobjective optimization , J. Horn;N. Nafpliotis;D. E. Goldberg , Proc. of IEEE World Congr. on Computational Intelligence / v.1,pp.82-87, 1994
  53. Multiobjective optimization using non-dominated sorting in genetic algorithms , N. Srinivas;K. Deb , Evolutionary Computation / v.2,pp.221-248, 1994
  54. Hybrid GA for multiobjective aerodynamic shape optimization , C. Poloni;M. Galan(ed.);G. Winter(ed.);J. Periaux(ed.);P. Cuesta(ed.) , Genetic Algorithms in Engineering and Computer Science / v.,pp.397-417, 1995
  55. Parallel geneticsolution for multiobjective MDO , R. Makinen;P. Neittaanmaki;J. Periaux;M. Sefrioui;J. Toivonen , Parallel CFD 96 / v.,pp., 1996
  56. Genetic algorithms for electromagnetic backscattering: Multiobjective optimization , M.-O. Bristeau;R. Glowinski;B. Mantel;J. Periaux;M. Sefrioui , System Design Using Evolutionary Optimization: Genetic Algorithms / v.,pp., 1999
  57. Comparison of multiobjective evolutionary algorithms: Empirical results , E. Zitzler;K. Deb;L. Thiele , Proc. of Genetic and Evolutionary Computation Conf. Workshop Program / v.,pp.121-122, 1999
  58. Multi-objective genetic algorithms: Problem difficulties and construction of test problems , K. Deb , Evolutionary Computation / v.7,pp.205-230, 1999
  59. Co-evolving parasites improve simulated evolution as an optimization procedure , W. D. Hillis , Artificial Life Ⅱ / v.,pp., 1991
  60. Game theory and the simple coevolutionary algorithm: Some preliminary results on fitness sharing , S. G. Ficici;J. B. Pollack , Proc. of GECCO 2001 Workshop on Coevolution / v.,pp., 2001

이 논문을 인용한 문헌 (1)

  1. Lee Dong-Wook ; Sim Kwee-Bo 2005. "Co-Evolutionary Model for Solving the GA-Hard Problems" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems, 15(3): 375~381 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일