$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Pseudo-parallel real hypersurfaces in complex space forms can be defined as an extrinsic analogues of pseudo-symmetric real hypersurfaces, that generalize the notion of semi-symmetric real hypersurface. In this paper a classification of the pseudo-parallel real hypersurfaces in a non-flat complex space forms is obtained.

참고문헌 (22)

  1. A. C. Asperti, G. A. Lobos and F. Mercuri, Pseudo-parallel immersions in space forms, Mat. Contemp. 17 (1999), 59–70 
  2. A. C. Asperti, G. A. Lobos and F. Mercuri, Pseudo-parallel submanifolds of a space form, Adv. Geom. 2 (2002), 57–71 
  3. J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132–141 
  4. M. do Carmo, M. Dacjzer and F. Mercuri, Compact conformally flat hypersurfaces, Trans. Amer. Math. Soc. 288 (1985), 189–205 
  5. T. E. Cecil and P. J. Ryan, Tight and taut immersions of manifolds, Research Notes in Mathematics, vol. 107, Pitman, Boston, MA, 1985 
  6. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481–499 
  7. J. Deprez, Semiparallel surfaces in Euclidean space, J. Geom. 25 (1985), 192–200 
  8. J. Deprez, Semiparallel hypersurfaces, Rend. Sem. Mat. Univ. Politec. Torino, 44 (1986), 303–316 
  9. J. Deprez, Semiparallel immersions. Geometry and topology of submanifolds (Marseille, 1987), 73–78, World Sci. Publishing, Teaneck, NJ, 1989 
  10. R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A 44 (1992), 1–34 
  11. F. Dillen, Semi-parallel hypersurfaces of a real space form, Israel J. Math. 75 (1991), 193–202 
  12. D. Ferus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81–93 
  13. U. Lumiste, Semi-symmetric submanifold as the second order envelope of symmetric submanifolds, Proc. Estonian Acad. Sci., Phys. Math. 39 (1990), 1–8 
  14. S. Maeda, Real hypersurfaces of complex projective spaces, Math. Ann. 263 (1983), 473–478 
  15. S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515–535 
  16. S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), 245–261 
  17. H. Naitoh, Parallel submanifolds of complex space forms, I and II Nagoya Math. J. I 90, 85–117, II 91, (1983), 119–149 
  18. R. Niebergall and P. J. Ryan, Semi-parallel and semi-symmetric real hypersurfaces in complex space forms, Kyungpook Math. J. 38 (1998), 227–234 
  19. R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and taut submanifolds, 233–305, Math. Sci. Res. Inst. Publ. Vol. 32, Cambridge Univ. Press, Cambridge, 1997 
  20. M. Ortega, Classifications of real hypersurfaces in complex space forms by means of curvature conditions, Bull. Belg. Math. Soc. Simon Stevin 3 (2002), 351–360 
  21. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvature, J. Math. Soc. Japan 27 (1973), 43–53 
  22. Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, KodaiMath. Sem. Rep. 15 (1963), 176–183 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일