$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In this paper we define a Cantor-like set K with overlaps in R$^1$. We find the correlation dimension of the set K without two conditions: the control of placements of basic sets constructing K and the thickness of K being greater than 1.

참고문헌 (8)

  1. W. Chin, B. Hunt and J. A. Yorke, Correlation dimension for iterated function systems, Trans. Amer. Math. Soc. 349 (1997), 1783-1796. 
  2. K. Falconer, Techniques in Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons 1997. 
  3. M. R. Lee, Correlation dimensions of Cantor sets with overlaps, Commun. Korean Math. Soc. 15 (2000), 293-300. 
  4. Y. Peres and B. Solomyak, Existence of $L^q$ dimensions and entropy dimension for self-conformal measures, Indiana Univ. Math. J. 49 (2000), no. 4, 1603-1621. 
  5. T. D. Sauer and J. A. Yorke, Are the dimensions of a set and its images equal under typical smooth functions ?, Ergodic Theory Dynam. Systems 17 (1997), 941-956. 
  6. K. Simon, Exceptional set and multifractal analysis, Period. Math. Hungar. 37 (1998), 121-125. 
  7. K. Simon, Multifractals and the dimension of exceptions, Real Anal. Exchange 27 (2001/02), no. 1, 191-207. 
  8. K. Simon and B. Solomyak, Correlation dimension for self-similar Cantor sets with overlaps, Fund. Math. 155 (1998), no. 3, 293-300. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일