$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

공격 탐지를 위한 트래픽 수집 및 분석 알고리즘

Traffic Gathering and Analysis Algorithm for Attack Detection

초록

본 논문에서는 기존 SNMP를 이용한 트래픽 분석 방법의 문제점을 개선시킨 SNMP 기반의 트래픽 추이 분석 알고리즘을 제안하였다. 기존 방법에서는 임계치를 적용함으로써 분석 시간이 많이 걸리며, 초기 공격 트래픽에 대해 탐지하지 못하는 취약점을 가지고 있었다. 본 논문에서는 임계치를 사용하지 않고 일주 트래픽 추이 분석, 프로토콜별 추이 분석 그리고 특정 MIB에서의 트래픽 발생 유무를 분석함으로써 기존 방법에서의 문제점을 해결할 수 있었다. 트래픽이 발생하게 되면 이 세 가지 분석 방법을 통해 이상 여부를 분석하고, 이상 트래픽이 중첩적으로 발생될 경우 현재 입력된 트래픽을 유해 트래픽으로 분석해 낼 수 있다. 제안한 알고리즘을 통해서 유해 트래픽을 빠르고 정확하게 분석해 낼 수 있으며, 이를 통해 트래픽 폭주 공격에 의한 피해를 줄일 수 있을 것이다.

Abstract

In this paper, a traffic trend analysis based SNMP algorithm is proposed for improving the problem of existing traffic analysis using SNMP. The existing traffic analysis method has a vulnerability that is taken much time In analyzing by using a threshold and not detected a harmful traffic at the point of transition. The method that is proposed in this paper can solve the problems that the existing method had, simultaneously using traffic trend analysis of the day, traffic trend analysis happening in each protocol and MIB object analysis responding to attacks instead of using the threshold. The algorithm proposed in this paper will analyze harmful traffic more quickly and more precisely; hence it can reduce the damage made by traffic flooding attacks. When traffic happens, it can detect the abnormality through the three analysis methods previously mentioned. After that, if abnormal traffic overlaps in at least two of the three methods, we can consider it as harmful traffic. The proposed algorithm will analyze harmful traffic more quickly and more precisely; hence it can reduce the damage made by traffic flooding attacks.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (2)

  1. Park, Jun-Sang ; Kim, Sung-Yun ; Park, Dai-Hee ; Choi, Mi-Jung ; Kim, Myung-Sup 2009. "Design and Implementation of an SNMP-Based Traffic Flooding Attack Detection System" 정보처리학회논문지. The KIPS transactions. Part C Part C, c16(1): 13~20 
  2. Yun, Sung-Yeol ; Kim, Hwan-Kuk ; Park, Seok-Cheon 2009. "Design and Evaluation of DDoS Attack Detection Algorithm in Voice Network" 한국해양정보통신학회논문지 = The journal of the Korea Institute of Maritime Information & Communication Sciences, 13(12): 2555~2562 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일