$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Channeling of Intermediates Derived from Medium-Chain Fatty Acids and De novo-SYnthesized Fatty Acids to Polyhydroxyalkanoic Acid by 2-Bromooctanoic Acid in Pseudomonas fluorescens BM07 원문보기

Journal of microbiology and biotechnology, v.14 no.6, 2004년, pp.1256 - 1266  

LEE, HO-JOO (Division of Applied Life Sciences (BK21), Graduate School) ,  RHO, JONG-KOOK (Division of Applied Life Sciences (BK21), Graduate School) ,  KAMBIZ AKBARI NOGHABI, (Division of Applied Life Sciences (BK21), Graduate School) ,  LEE, SEUNG-EUN (Division of Applied Life Sciences (BK21), Graduate School) ,  CHOI, MUN-HWAN (PMBBRC) ,  YOON, SUNG-CHUL (Division of Applied Life Sciences (BK21), Graduate School,Division of Life Science, College of Natural Sciences, PMBBRC,Environmental Biotechnology National Core Research Center, Gyeongsang National University)

Abstract AI-Helper 아이콘AI-Helper

2-Bromooctanoic acid (2-BrOA) is known to block the formation of polyhydroxyalkanoic acid (PHA) in Pseudomonasfluorescens BM07 without any influence on the cell growth when grown on fructose, but it inhibits the cell growth when grown on octanoate (OA) (Lee et al., Appl. Environ. Microbiol. 67: 4963...

주제어

참고문헌 (16)

  1. Anderson, A. J. and E. A. Dawes. 1990. Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472 

  2. Choi, M. H., H.-J. Lee, J. K. Rho, S. C. Yoon, J. D. Nam, D. B. Lim, and R. W. Lenz. 2003. Biosynthesis and local sequence specific degradation of poly(3- hydroxyvalerateco- 4-hydroxybutyrate) in Hydrogenophaga pseudoflava. Biomacromolecules 4: 38-45 

  3. Choi, M. H. and S. C. Yoon. 1994. Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl. Environ. Microbiol. 60: 3245-3254 

  4. Fiedler, S., A. Steinbuchel, and B. H. A. Rehm. 2000. PhaGmediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl. Environ. Microbiol. 66: 2117-2124 

  5. Green, P. R., J. Kemper, L. Schechtman, L. Guo, M. Satkowski, S. Fiedler, A. Steinbuchel, and B. H. A. Rehm. 2002. Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid $\beta$ -oxidation inhibited Ralstonia eutropha. Biomacromolecules 3: 208- 213 

  6. Hoffmann, N., A. Steinbuchel, and B. H. A. Rehm. 2000. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl. Microbiol. Biotechnol. 54: 665-670 

  7. Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571-577 

  8. Kim, D. Y., Y. B. Kim, and Y. H. Rhee. 2002. Cometabolic production of poly(3-hydroxyalkanoates) containing carboncarbon double and triple bonds by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 12: 518-521 

  9. Lee, H.-J., M. H. Choi, T.-U. Kim, and S. C. Yoon. 2001. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid. Appl. Environ. Microbiol. 67: 4963- 4974 

  10. Lee, S. Y. and Y. Lee. 2003. Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(-)-hydroxycarboxylic acids. Appl. Environ. Microbiol. 69: 3421-3426 

  11. Lee, S. Y., Y. Lee, and F. Wang. 1999. Chiral compounds from bacterial polyesters: Sugars to plastics to fine chemicals. Biotechnol. Bioeng. 65: 363-368 

  12. Madison, L. L. and G. W. Huisman. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53 

  13. Qi, Q., A. Steinbuchel, and B. H. A. Rehm. 1998. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): Inhibition of fatty acid $\beta$ -oxidation by acrylic acid. FEMS Microbiol. Lett. 167: 89-94 

  14. Rehm, B. H. A., N. Kroger, and A. Steinbuchel. 1998. A new metabolic link between fatty acid synthesis and polyhydroxyalkanoic acid synthesis. J. Biol. Chem. 273: 24044-24051 

  15. Song, J. J., M. H. Choi, S. C. Yoon, and N. E. Huh. 2001. Cometabolism of $\omega$ -phenylalkanoic acids with butyric acid for efficient production of aromatic polyesters in Pseudomonas putida BM01. J. Microbiol. Biotechnol. 11: 435-442 

  16. Song, J. J. and S. C. Yoon. 1996. Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomona putida BM01. Appl. Environ. Microbiol. 62: 536-544 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로