$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

2-Bromooctanoic acid (2-BrOA) is known to block the formation of polyhydroxyalkanoic acid (PHA) in Pseudomonasfluorescens BM07 without any influence on the cell growth when grown on fructose, but it inhibits the cell growth when grown on octanoate (OA) (Lee et al., Appl. Environ. Microbiol. 67: 4963- 4974, 2001). We investigated the role of 2-BrOA in the PHA synthesis of the bacterium grown with mixtures of fructose and fatty acids. OA, 11­phenoxyundecanoic acid (1 1-POU), and 5-phenylvaleric acid (5-PV) were selected as model substrates. When supplemented with 50 mM fructose, all these carboxylic acids suppressed the formation of PHA from fructose, however, the ~-oxidation coenzyme A monomers derived from the carboxylic acids were efficiently polymerized, but the conversion yield [(mol of carboxylate substrate converted into PHA)/(mol of carboxylate substrate in the feed)] was low (e.g., maximally $\~53\%$ for 5 mM 11-POU). Addition of 2-BrOA (up to 5 mM) to the mixed carbon sources raised the conversion yield sensitively and effectively only at low levels of the acid substrates (e.g., 2 mM 1 1-POU or 5 mM OA): For instance, $100\%$ of 2 mM ll-POU were converted into PHA in the presence of 5 mM 2-BrOA, whereas only $\~10\%$ of the 1 1-POU were converted in the absence of 2-BrOA. However, at highly saturated suppressing levels (e.g., 5 mM ll-POU), 2-BrOA inhibitor showed no significant additional effect on the conversion ($60- 70\%$ conversion irrespective of 2-BrOA level). The existence of competitive and compensative relationship between 2­BrOA and all the carboxylic acid substrates used may indicate 'Present address: Section on Brain Physiology and Metabolism, Bldg. 10, Rm. 6N202, National Institute on Agmg, National Institute of Health, Bethesda, MD 20892, U.S.A. that all the acid substrate-derived inhibiting species bind to the same site as the 2-BrOA inhibiting species does. We, therefore, suggest that 2-BrOA can be used for efficiently increasing the yield of conversion of expensive substituted fatty acids into PHA and then substituted 3-hydroxyacids by hydrolyzing it.

저자의 다른 논문

참고문헌 (16)

  1. Anderson, A. J. and E. A. Dawes. 1990. Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472 
  2. Choi, M. H. and S. C. Yoon. 1994. Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl. Environ. Microbiol. 60: 3245-3254 
  3. Lee, H.-J., M. H. Choi, T.-U. Kim, and S. C. Yoon. 2001. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid. Appl. Environ. Microbiol. 67: 4963- 4974 
  4. Rehm, B. H. A., N. Kröger, and A. Steinbüchel. 1998. A new metabolic link between fatty acid synthesis and polyhydroxyalkanoic acid synthesis. J. Biol. Chem. 273: 24044-24051 
  5. Song, J. J., M. H. Choi, S. C. Yoon, and N. E. Huh. 2001. Cometabolism of $\omega$-phenylalkanoic acids with butyric acid for efficient production of aromatic polyesters in Pseudomonas putida BM01. J. Microbiol. Biotechnol. 11: 435-442 
  6. Song, J. J. and S. C. Yoon. 1996. Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomona putida BM01. Appl. Environ. Microbiol. 62: 536-544 
  7. Hoffmann, N., A. Steinbüchel, and B. H. A. Rehm. 2000. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl. Microbiol. Biotechnol. 54: 665-670 
  8. Green, P. R., J. Kemper, L. Schechtman, L. Guo, M. Satkowski, S. Fiedler, A. Steinbüchel, and B. H. A. Rehm. 2002. Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid $\beta$-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3: 208- 213 
  9. Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571-577 
  10. Fiedler, S., A. Steinbüchel, and B. H. A. Rehm. 2000. PhaGmediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl. Environ. Microbiol. 66: 2117-2124 
  11. Lee, S. Y., Y. Lee, and F. Wang. 1999. Chiral compounds from bacterial polyesters: Sugars to plastics to fine chemicals. Biotechnol. Bioeng. 65: 363-368 
  12. Qi, Q., A. Steinbüchel, and B. H. A. Rehm. 1998. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): Inhibition of fatty acid $\beta$-oxidation by acrylic acid. FEMS Microbiol. Lett. 167: 89-94 
  13. Madison, L. L. and G. W. Huisman. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53 
  14. Lee, S. Y. and Y. Lee. 2003. Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(-)-hydroxycarboxylic acids. Appl. Environ. Microbiol. 69: 3421-3426 
  15. Choi, M. H., H.-J. Lee, J. K. Rho, S. C. Yoon, J. D. Nam, D. B. Lim, and R. W. Lenz. 2003. Biosynthesis and local sequence specific degradation of poly(3- hydroxyvalerateco- 4-hydroxybutyrate) in Hydrogenophaga pseudoflava. Biomacromolecules 4: 38-45 
  16. Kim, D. Y., Y. B. Kim, and Y. H. Rhee. 2002. Cometabolic production of poly(3-hydroxyalkanoates) containing carboncarbon double and triple bonds by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 12: 518-521 

이 논문을 인용한 문헌 (1)

  1. 2007. "" Journal of microbiology and biotechnology, 17(12): 2018~2026 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일