$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Atomic Force Microscopy and Specular Reflectance Infrared Spectroscopic Studies of the Surface Structure of Polypropylene Treated with Argon and Oxygen Plasmas

Macromolecular research v.12 no.6 , 2004년, pp.608 - 614  
Abstract

Isotactic polypropylene (PP) surfaces were modified with argon and oxygen plasmas using a radio­frequency (RF) glow discharge at 240 mTorr and 40 W. The changes in topography and surface structure were investigated by atomic force microscopy (AFM) in conjunction with specular reflectance of infrared (IR) microspectroscopy. Under our operating conditions, the AFM image analysis revealed that longer plasma treatment resulted in significant ablation on the PP surface, regardless of the kind of plasma employed, but the topography was dependent on the nature of the gases. Specular reflectance IR spectroscopic analysis indicated that the constant removal of surface material was an important ablative aspect when using either plasma, but the nature of the ablative behavior and the resultant aging effects were clearly dependent on the choice of plasma. The use of argon plasma resulted in a negligible aging effect; in contrast, the use of oxygen plasma caused a noticeable aging effect, which was due to reactions of trapped or isolated radicals with oxygen in air, and was partly responsible for the increased surface area caused by ablation. The use of oxygen plasma is believed to be an advantageous approach to modifying polymeric materials with functionalized surfaces, e.g., for surface grafting of unsaturated monomers and incorporating oxygen-containing groups onto PP.

참고문헌 (28)

  1. P. K. Chu, J. Y. Chen, L. P. Wang, and N. Huang, Mater. Sci. Eng. R, 36, 143 (2002) 
  2. S. J. Lee, Y. M. Lee, G. Khang, I. Y. Kim, B. Lee, and H. B. Lee, Macromol. Res., 10, 150 (2002) 
  3. J. S. Lee, G. S. Chae, T. K. An, G. Khang, S. H. Cho, and H. B. Lee, Macromol. Res., 11, 183 (2003) 
  4. A. Ohl and K. Schroder Surf. Coat. Tech., 116, 820 (1999) 
  5. S. Lerouge, M. R. Wertheimer, and L'H. Yahia, Plasmas and Polymers, 6, 175 (2001) 
  6. A. Grill, Cold Plasma in Materials Fabricationjrom Fundamentals to Applications, IEEE Press, New York, 1994 
  7. K. E. Ryu, H. Rhim, C. W. Park, H. J. Chun, S. H. Hong, Y. C. Kim, and Y. M. Lee, Macromol. Res., 12,46 (2004) 
  8. R. M. France and R. D. Short, Langmuir, 14, 4827 (1998) 
  9. S. W. Ha, R. Hauert, K. H. Ernst, and E. Wintermantel, Surf. Coat. Tech.., 96, 293 (1997) 
  10. S. Vallon, B. Drevillen, and F. Poncin-Epaillard, Appl. Surf. Sci., 108,177 (1997) 
  11. G. Khang, J. H. Jeon, J. M. Rhee, and H. B. Lee, Polymer(Korea), 23, 861 (1999) 
  12. R. Mishra, S. P. Tripathy, K. K. Dwivedi, D. T. Khathing, S. Ghosh, M. Muller, and D. Fink, Radiation Measurements, 33,845 (2001). see also W. Klopffer, Introduction to Polymer Spectroscopy, Springer-Verlag, 1984, p. 91 
  13. F. Clouet and M. K. Shi, J. Appl. Polym. Sci., 46, 1955 (1992) 
  14. D. K. Hegemann, H. Brunner, and C. Oehr, Plasmas and Polymers, 6, 221 (2001) 
  15. K. S. Yang, X. Guo, W. Meng, J. Y. Hyun, and I. K. Kang, Macromol. Res., 11,488 (2003) 
  16. H. Yasuda, Plasma Polymerization, Academic Press, New York, 1985 
  17. K. E. Ryu, H. Rhim, C. W. Park, H. J. Chun, S. H. Hong, J. J. Kim, and Y. M. Lee, Macromol. Res., 11,451 (2003) 
  18. H. B. Lee and J. H. Lee, Biocompatibility of Solid Substrates Based on Suiface Wettability, in Encyclopedic Handbook of Biomaterials and Bioengineering: Part A. Materials, D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwarz(Eds.), Maecel Dekker, New York, 1995. Vol. 1, pp 371-398 
  19. E. D. Seo, Macromol. Res., 12, 134 (2004) 
  20. J. B. Park, Biomaterials Science and Engineering, Plenum Press, New York, 1984. 614 
  21. M. Aouinti, P. Bertrand, and F. Poncin-Epaillard, Plasmas and Polymers, 8, 225 (2003) 
  22. H. Schonhom and H. Hansen,. J. Appl. Polym. Sci., 11, 1461 (1967) 
  23. G. Khang, M. K. Choi, J. M. Lee, S. J. Lee, H. B. Lee, Y. Iwasaki, N. Nakabayashi, and K. Ishihara, Korea Polym. J., 9, 107 (2001) 
  24. A. F. van Rectum and T. G. van Kooten, J. Biomater. Sci., Polym. Ed., 7,181 (1995) 
  25. G. Khang, J. M. Lee, P. Shin, I. Y. Kim, B. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Macromol. Res., 10, 158 (2002) 
  26. N. V. Bhat and D. J. Upadhyay, J. Appl Polym Sci., 86, 925 (2002) 
  27. R. Singhvi, A. Stephanopoulos, and D. J. C. Wang, Biotechnol. Bioeng., 43, 764 (1994) 
  28. Y. R. Kang, H. S. Lym, and E. D. Seo, Polymer(Korea), 15, 570 (1991) 

이 논문을 인용한 문헌 (1)

  1. Seo, Eun-Deock 2012. "Low Temperature Plasma Treatment of Linseed Oil for Immobilization of Silica as Flame-resistant Material" 韓國染色加工學會誌 = Textile coloration and finishing, 24(4): 313~320 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일