• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


Glucose oxidase was immobilized on the carboxylated multi-wall carbon nanotubes (MWNT-COOHs) in the presence of a coulping reagent, 1-ethy1-3-(3-dimethylaminopropy1) carbodiimide. Significant amounts of glucose oxidase were also immobilized on MWNT-COOHs without the coupling reagent. Various conditions for the immobilization of glucose oxidase were optimized. Optimal pH for the maximal activity of the immobilized glucose oxidase shifted to 7 from the optimal pH of 6 for the maximal activity of free enzyme due to the carboxy1 groups on the surface of MWNT-COOHs. An electrode of graphite rod with a diameter of 6 mm was fabricated using the immobilized glucose oxidase. The cyclic voltammetry study of the enzyme electrode revealed that the oxidation of glucose and subsequent transfer of electrons from the oxidation of glucose to the electrode were possible by the immobilized glucose oxidase without a mediator, implying that the enzyme electrode can be utilized for the development of biofuel cells.

참고문헌 (22)

  1. Azamian, B. R., K. S. Coleman, J. J. Davis, N. Hanson, and M. L. H. Green. 2002. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun. 366- 367 
  2. Luo, H., Z. Shi, N. Li, Z. Gu, and Q. Zhuang. 2001. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotubes film on a glassy carbon electrode. Anal. Chem. 73: 915- 920 
  3. Ryu. K. G., Y. R. Chae, and O. Y. Kwon. 2003. Oxidation of dibenzothiophene catalyzed by surfactant-hemoprotein complexes in anhydrous nonpolar organic solvents. J. Microbiol. Biotechnol. 13: 647- 650 
  4. Woo, S. H., J. S. Cho, B. K. Hur, D. H. Shin, K. G. Ryu, and E. K. Kim. 2003. Hydrogen peroxide, its measurement and effect during enzymatic decoloring of congo red. J. Microbiol, Biotechnol. 13: 773- 777 
  5. Balavoine, F., P. Schultz, C. Richard, V. Mallouh, T. W. Ebbesen, and C. Mioskowski. 1999. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew. Chem. Int. Ed. 38: 1912-1915 
  6. Davis, J. J., M. L. H. Green, H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Sloan, A. V. Xavier, and S. C. Tsang. 1997. The immobilization of proteins in carbon nanotubes. Inorg. Chim. Acta 272: 261- 266 
  7. Kim, J. R., Y. K. Oh, Y. J. Yoon, E. Y. Lee, and S. H. Park. 2003. Oxygen sensitivity of carbon-monooxide-dependent hydrogen production activity in Citrohactor sp. J. Microbiol, Biotechnol. 13: 717 - 724 
  8. Pham, T H., J. K. Jang. I. S. Chang, and B. H. Kim. 2004. Improvement of cathode reaction of a mediatorless microbial fuel cell. J. Microbiol. Biotechnol. 14: 324- 329 
  9. Davis, J. J.. R. J. Coles, and H. A. O. Hill. 1997. Protein electrochemistry at carbon nanotube electrodes. J. Electroanal. Chem. 440: 279- 282 
  10. Kang, S. C., H. J. Kim, S. W. Nam, and D. K. Oh. 2002. Surface immobilization on silica of endoxylanase produced from recombinant Bacillus subtilis. J. Microbiol. Biotechnol. 12: 766- 772 
  11. Reitman, O. A.. E. Katz. A. F. Buckmann, and l. Willner. 2002. Integration of polyaniline/poly(ccrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioclcctrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J. Am. Chem. Soc. 124: 6487- 6496 
  12. Willner, I. and E. Katz. 2000. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed. 39: 1180-1218 
  13. Barton, S. C. H. H. Kim, G. Binyamin, Y. Zhang, and A. Heller. 2001. The 'wired' laccase cathode: High current density electroreduction of $O_{2}$ to water at +0.7 V(NHE) at pH 5. J. Am. Chem. Soc. 123: 5802- 5803 
  14. Kim, H. J., M. S. Hyun, H. S. Chang, and B. H. Kim. 1999. A microbial fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365- 367 
  15. Pizzariello. A., M. Stred'ansky, and S. Miertus. 2002. A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix. Biochemistry 56: 99-105 
  16. Allen, R. M. and H. P. Bennetto. 1993. Microbial fuel cells. Electricity production from carbohydrates. Appl. Biochem. Biotechnol. 39/40: 27- 40 
  17. Katz, E., I. Willner, and A. B. Kotlyar. 1999. A noncompartmentalized $glucose/O_{2}$ biofuel cell by bioengineered electrode surfaces. J. Electroanal. Chem. 479: 64- 68 
  18. Azamian, B. R., J. J. Davis, K. S. Coleman, C. B. Bagshaw, and M. L. H. Green. 2002. Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc. 124: 12664- 12665 
  19. Willner, I.. E. Katz, F. Patolsky, and A. F. Buckmann. 1998. Biofuel cell based on glucose oxidase and microperoxidase11 monolayer-functionalized electrodes. J. Chem, Soc. Perkin Trans. 2: 1817- 1822 
  20. Palmore. G. T. R.. H. Bertschy, S. H. Bergens. and G. M. Whitesides. 1998. A methanolldioxygen biofuel cell that uses $NAD^{+}$ -dependent dehydrogenases as catalysts: Application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem. 443: 155- 161 
  21. Mano, N., H. H. Kim. Y. Zhang, and A. Heller. 2002. An oxygen cathode operating in a physiological solution. J. Am. Chem. Soc. 124: 6480- 6486 
  22. Chen. T., S. C. Barton, G. Minyamin, Z. Gao, Y. Zhang, H. H. Kim, and A. Heller. 2001. A miniature biofuel cell. J. Am. Chem. Soc. 123: 8630- 8631 

이 논문을 인용한 문헌 (1)

  1. 2007. "" Journal of microbiology and biotechnology, 17(6): 960~967 

DOI 인용 스타일