$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Immobilization of Glucose Oxidase on Multi-Wall Carbon Nanotubes for Biofuel Cell Applications 원문보기

Journal of microbiology and biotechnology, v.15 no.2, 2005년, pp.234 - 238  

JUNG SOO KEUN (School of Chemical Engineering and Bioengineering, College of Engineering, The University of Ulsan) ,  CHAE YOUNG RAE (School of Chemical Engineering and Bioengineering, College of Engineering, The University of Ulsan) ,  YOON JONG MOON (School of Chemical Engineering and Bioengineering, College of Engineering, The University of Ulsan) ,  CHO BYUNG WON (Eco-Nano Research Center, Korea Institute of Science and Technology) ,  RYU KEUN GARP (School of Chemical Engineering and Bioengineering, College of Engineering, The University of Ulsan)

Abstract AI-Helper 아이콘AI-Helper

Glucose oxidase was immobilized on the carboxylated multi-wall carbon nanotubes (MWNT-COOHs) in the presence of a coulping reagent, 1-ethy1-3-(3-dimethylaminopropy1) carbodiimide. Significant amounts of glucose oxidase were also immobilized on MWNT-COOHs without the coupling reagent. Various conditi...

참고문헌 (22)

  1. Allen, R. M. and H. P. Bennetto. 1993. Microbial fuel cells. Electricity production from carbohydrates. Appl. Biochem. Biotechnol. 39/40: 27- 40 

  2. Azamian, B. R., J. J. Davis, K. S. Coleman, C. B. Bagshaw, and M. L. H. Green. 2002. Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc. 124: 12664- 12665 

  3. Azamian, B. R., K. S. Coleman, J. J. Davis, N. Hanson, and M. L. H. Green. 2002. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun. 366- 367 

  4. Balavoine, F., P. Schultz, C. Richard, V. Mallouh, T. W. Ebbesen, and C. Mioskowski. 1999. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew. Chem. Int. Ed. 38: 1912-1915 

  5. Barton, S. C. H. H. Kim, G. Binyamin, Y. Zhang, and A. Heller. 2001. The 'wired' laccase cathode: High current density electroreduction of $O_{2}$ to water at +0.7 V(NHE) at pH 5. J. Am. Chem. Soc. 123: 5802- 5803 

  6. Chen. T., S. C. Barton, G. Minyamin, Z. Gao, Y. Zhang, H. H. Kim, and A. Heller. 2001. A miniature biofuel cell. J. Am. Chem. Soc. 123: 8630- 8631 

  7. Pham, T H., J. K. Jang. I. S. Chang, and B. H. Kim. 2004. Improvement of cathode reaction of a mediatorless microbial fuel cell. J. Microbiol. Biotechnol. 14: 324- 329 

  8. Davis, J. J.. R. J. Coles, and H. A. O. Hill. 1997. Protein electrochemistry at carbon nanotube electrodes. J. Electroanal. Chem. 440: 279- 282 

  9. Davis, J. J., M. L. H. Green, H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Sloan, A. V. Xavier, and S. C. Tsang. 1997. The immobilization of proteins in carbon nanotubes. Inorg. Chim. Acta 272: 261- 266 

  10. Kang, S. C., H. J. Kim, S. W. Nam, and D. K. Oh. 2002. Surface immobilization on silica of endoxylanase produced from recombinant Bacillus subtilis. J. Microbiol. Biotechnol. 12: 766- 772 

  11. Katz, E., I. Willner, and A. B. Kotlyar. 1999. A noncompartmentalized $glucose/O_{2}$ biofuel cell by bioengineered electrode surfaces. J. Electroanal. Chem. 479: 64- 68 

  12. Kim, H. J., M. S. Hyun, H. S. Chang, and B. H. Kim. 1999. A microbial fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365- 367 

  13. Kim, J. R., Y. K. Oh, Y. J. Yoon, E. Y. Lee, and S. H. Park. 2003. Oxygen sensitivity of carbon-monooxide-dependent hydrogen production activity in Citrohactor sp. J. Microbiol, Biotechnol. 13: 717 - 724 

  14. Luo, H., Z. Shi, N. Li, Z. Gu, and Q. Zhuang. 2001. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotubes film on a glassy carbon electrode. Anal. Chem. 73: 915- 920 

  15. Mano, N., H. H. Kim. Y. Zhang, and A. Heller. 2002. An oxygen cathode operating in a physiological solution. J. Am. Chem. Soc. 124: 6480- 6486 

  16. Palmore. G. T. R.. H. Bertschy, S. H. Bergens. and G. M. Whitesides. 1998. A methanolldioxygen biofuel cell that uses $NAD^{+}$ -dependent dehydrogenases as catalysts: Application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem. 443: 155- 161 

  17. Pizzariello. A., M. Stred'ansky, and S. Miertus. 2002. A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix. Biochemistry 56: 99-105 

  18. Reitman, O. A.. E. Katz. A. F. Buckmann, and l. Willner. 2002. Integration of polyaniline/poly(ccrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioclcctrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J. Am. Chem. Soc. 124: 6487- 6496 

  19. Ryu. K. G., Y. R. Chae, and O. Y. Kwon. 2003. Oxidation of dibenzothiophene catalyzed by surfactant-hemoprotein complexes in anhydrous nonpolar organic solvents. J. Microbiol. Biotechnol. 13: 647- 650 

  20. Willner, I.. E. Katz, F. Patolsky, and A. F. Buckmann. 1998. Biofuel cell based on glucose oxidase and microperoxidase11 monolayer-functionalized electrodes. J. Chem, Soc. Perkin Trans. 2: 1817- 1822 

  21. Willner, I. and E. Katz. 2000. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed. 39: 1180-1218 

  22. Woo, S. H., J. S. Cho, B. K. Hur, D. H. Shin, K. G. Ryu, and E. K. Kim. 2003. Hydrogen peroxide, its measurement and effect during enzymatic decoloring of congo red. J. Microbiol, Biotechnol. 13: 773- 777 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로