• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Effects of Adenylate Cyclase, Guanylate Cyclase and KATP Channel Blockade on the Cerebral Blood Flow Response Induced by Adenosine A2B Receptor Agonist in the Rats


This study was performed to investigate the regulatory mechanism of cerebral blood flow of adenosine A$_{2B}$ receptor agonist in the rats, and to define whether its mechanism is mediated by adenylate cyclase, guanylate cyclase and potassium channel. In pentobarbital-anesthetized, pancuronium-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood flow from cerebral cortex was measured using laser-Doppler flowmetry. Topical application of an adenosine A$_{2B}$ receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA; 4 umol/I) increased cerebral blood flow. This effect of NECA (4 umol/I) was not blocked by pretreatment with adenylate cyclase inhibitor, MDL-12,330 (20 umol/I). But effect of NECA (4 umol/I) was blocked by pretreatment with guanylate cyclase inhibitor, LY-83,583 (10 umol/I) and pretreatment with ATP-sensitive potassium channel inhibitor, glipizide (5 umol/I). These results suggest that adenosine A$_{2B}$ receptor increases cerebral blood flow. It seems that this action of adenosine A$_{2B}$ receptor is mediated via the activation of guanylate cyclase and ATP-sensitive potassium channel in the cerebral cortex of the rats.

저자의 다른 논문

참고문헌 (36)

  1. 1. Bruns, R. F., Fergus, J. H., Badger, E. W., Bristol, J. A., Santay, L. A., Hartman, J. D., Hays, S. J. and Huang, C. C. (1987). Binding of the $A_1$ -selective adenosine antagonist 8-cyclopentyl-1,3-diproxylxanthine to rat brain membranes. Naunyn-Schmiedebergs Arch. Pharmacol. 335, 59-63 
  2. 2. Choca, J. I., Proudfit, H. K. and Green, R. D. (1987). Identification of $A_1$ and $A_2$ adenosine receptors in the rat spinal cord. J. Pharmacal. Exp. Ther. 242, 905-910 
  3. 3. Coney, A. M. and Marshall, J. M. (1998). Role of adenosine and its receptors in the vasodilatation induced in the cerebral cortex of the rat by systemic hypoxia. J. Physiol. 509, 507-518 
  4. 4. Dirnagl, U., Lindauer, U. and Villringer, A. (1993). Role of nitric oxide in the coupling of cerebral blood flow to neuronal activation in rats. Neurosci. Lett. 149, 43-46 
  5. 5. Edvinsson, L. and Fredholm, B. B. (1983). Charaterization of adenosine receptors in isolated cerebral arteries of cat. Br. J. Pharmacol. 80, 631-637 
  6. 6. Fiebich, B. L., Biber, K., Gyufko, K., Berger, M., Bauer, J. and Van-Calker, D. (1996). Adenosine $A_{2b}$ receptors mediate an increase in interleukin(IL)- mRNA and IL-6 protein synthesis in human astroglioma cells. J. Neurochem. 66, 1426-1431 
  7. 7. Fredholm, B. B., Abbrachio, M. P., Bumstock, G., Daly, J. W., Harden, T. K., Jacobson, K. A., Left, P. and Williams, M. (1994). Nomenclature and classification of purinoceptors. Pharmacol. Rev. 46, 143-156 
  8. 8. Garthwaite, J., Charles S. L. and Chess-Williams R. (1988). EndotheliumA] derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385-388 
  9. 9. Gerber, U. and Gahwiler, B. H. (1994). $GABA_B$ and adenosine receptors mediate enhancement of the $K^+$ current, $I_{AHP}$ by reducing adenylate cyclase activity in rat CA3 hippocampal neurons. J. Neurophysiol. 72, 2360-2367 
  10. 10. Hong, K. W., Pyo, K. M., Lee, W. S., Yu, S. S. and Rhim, B. Y. (1994). Pharmacological evidence that calcitonin-related peptide is implicated in cerebral autoregulation. Am. J. Heart. Circ. Physiol. 266, H11-H16 
  11. 11. Hong, K. W., Shin, H. K., Kim, H. H., Choi, J. M., Rhim, B. Y. and Lee W. S. (1999). Metabolism of exogenous cAMP to adenosine and its role for vasodilation during cerebral autoregulation in rat pial artery. Am. J. Heart. Circ. Physiol. 276, H376-H382 
  12. 12. Hong, K. W., Yoo, S. E., Yu, S. S., Lee, J. Y. and Rhim, B. Y. (1996). Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles. Am. J. Heart. Circ. Physiol. 270, H317-H323 
  13. 13. Hyman, A. L., Kadowitz, P. J. and Lippton, H. L. (1989). Methylene blue selectively inhibits pulmonary vasodilator responses in cats. J. Appl. Physiol. 66, 1513-1517 
  14. 14. Jiang, H., Colbran, J. L., Francis, S. H. and Corbin, J. D. (1992). Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J. Biol. Chem. 267, 1015-1019 
  15. 15. Liang, B. T. and Haltiwanger, B. (1995). Adenosine $A_{2a}$ and $A_{2b}$ receptors in cultured fetal chick heart cells. High-and lowaffinity coupling to stimulation of myocyte contractility and cAMP accumulation. Circ. Res. 76, 242-251 
  16. 16. Martin, P. L. (1992). Relative agonist potencies of C2-substituted analogs of adenosine: evidence for adenosine $A_{2B}$ receptors in the guinea pig aorta. Eur. J. Pharmacol. 216, 235-242 
  17. 17. Martin, P. L. and Potts, A. A. (1994). The endothelium of the rat renal artery plays an obligatory role in $A_2$ adenosine receptor-mediated relaxation induced by 5'-N-ethylcarboxamidoadenosine and $N^6$ -cyclopentyladenosine. J. Pharmacol. Exp. Ther. 270, 893-899 
  18. 18. Mian, R. and Marshall, J. M. (1991). The role of adenosine in dilator responses induced in arterioles and venules of rat skeletal muscle by systemic hypoxia. J. Physiol. 443, 499-511 
  19. 19. Ngai, A. C. and Winn, H. R. (1993). Effects of adenosine and its analogues on isolated arterioles: extraluminal and intraluminal application. Circ. Res. 73, 448-457 
  20. 20. Nicoll, R. A. (1988). The coupling of neurotransmitter receptor to ion channels in the brain. Science 241, 545-551 
  21. 21. Olah, M. E. and Stiles, G. L. (1996). Adenosine receptor subtypes: characterization and therapeutic regulation. Annu. Rev. Pharmacol. Toxicol. 35, 581-606 
  22. 22. Shin, H., K., Shin, Y., W. and Hong, K., W. (2000). Role of adenosine $A_{2B}$ receptors in vasodilation of rat pial artery and cerebral blood flow autoregulation. Am. J. Physiol.-Heart and Circulatory Physiology 278, H339-H344 
  23. 23. Skinner, M. R. and Marshall, J. M. (1996). Studies on the roles of ATP, adenosine and nitric oxide in mediating muscle vasodilation induced in the rat by acute systemic hypoxia. J. Physiol. 495, 553-560 
  24. 24. Stehle, J. H., Rivkees, S. A., Lee, J. J., Weaver, D. R., Deeds, J. D. and Reppert, S. M. (1992). Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Mol. Endocrinol. 6, 384-393 
  25. 25. Stone, G. A., Jarvis, M. F., Sills, M. S., Weeks, B., Snowhill, E. W. and Williams, M. (1988). Species differences in high affinity adenosine $A_2$ binding sites in striatal membranes from mammalian brain. Drug Develop. Res. 15, 31-46 
  26. 26. Strohmeier, G. R., Reppert, S. M., Lencer, W. I. and Madara, J. L. (1995). The $A_{2b}$ adenosine receptor mediates camp responses to adenosine receptor agonists in human intestinal epithelia. J. Biol. Chem. 270, 2387-2941 
  27. 27. Thomas, T. and Marshall, J. M. (1994). Interdependence of respiratory and cardiovascular changes induced by systemic hypoxia in the rat: the role of adenosine. J. Physiol. 480, 627-636 
  28. 28. Trussel, L. O. and Jackson, M. B. (1985). Adenosine-axtivated potassium conductance in cultured striatal neurons. Proc. Natl Acad. Sci. USA. 82, 4857-4861 
  29. 29. Van Calker, D., Muller, M. and Hamprecht, B. (1979). Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33, 999-1005 
  30. 30. Van Wylen, D. G. L., Park, T. S., Rubio, R. and Berne, R M. (1989). The effect of local infusion of adenosine and adenosine analogues on local cerebral blood flow. J. Cereb. Blood. Flow. Metab. 9, 556-562 
  31. 31. Watts, A.E., Hicks, G. A and Henderson, G.(1995). Putative preand postsynaptic ATP-sensitive potassium channels in the rat substantia nigra in vitro. J. Neurosci. 15(4), 3065-3074 
  32. 32. Webb, R. L., Sills, M. A., Chovan, J. P., Balwierczak, J. L. and Francis. J. E. (1992). CGS21680: a potent selective adenosine $A_2$ receptor agonist. Cardiovasc. Drug Rev. 10. 26-53.1 
  33. 33. Winn, H. R., Rubio, R. and Berne, R. M. (1981). The role of adenosine in the regulation of cerebral blood flow. J. Cereb. Blood. Flow. Metab. 1, 239-244 
  34. 34. Wysham, D. G., Brotherton, A. E. and Heistad, D. D. (1986). Effects of forskolin on cerebral blood flow : Implications for a role of adenylate cyclase. Stroke 17, 1299-1303 
  35. 35. Yoneyama, F., Yamada, H., Satoh, K. and Taira, N. (1992). Vasodepressor mechani of 2-(l-octynyl)-adenosine (YT-146), a selective adenosine $A_2$ receptor agonist, involve the opening of glibenclamide-sensitive $K^+$ channels. Eur. J. Pharmacol. 213, 199-204 
  36. 36. Zhou, H. L. and Torphy, T. J. (1991). Relationship between cyclic guanosine monophosphate accumulation and relaxation of canine trachealis induced by nitrovasodilators. J. Pharmacol. Exp. Ther. 258, 972-978 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

이 논문과 연관된 기능

DOI 인용 스타일

"" 핵심어 질의응답