$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Comparison of Antibiotic Resistance of Blood Culture Strains and Saprophytic Isolates in the Presence of Biofilms, Formed by the Intercellular Adhesion (ica) Gene Cluster in Staphylococcus epidermidis 원문보기

Journal of microbiology and biotechnology, v.15 no.4, 2005년, pp.728 - 733  

CHO BONG-GUM (Laboratory of Enteric Infections, Department of Microbiology, National Institute of Health, Department of Applied Biochemistry, College of Natural Sciences, Konkuk University) ,  KIM CHEORL-HO (National Research Laboratory for Glycobiology, Ministry of Science and Technology of Korean Government and Department of Biochemistry and Molecular Biology, Dongguk University COM) ,  LEE BOK KWON (Laboratory of Enteric Infections, Department of Microbiology, National Institute of Health) ,  CHO SEUNG-HAK (Laboratory of Enteric Infections, Department of Microbiology, National Institute of Health)

Abstract AI-Helper 아이콘AI-Helper

To elucidate the question of whether biofilm formed by the intercellular adhesion (ica) gene cluster has influences on antibiotic resistance in Staphylococcus epidermidis, we compared 124 skin strains with strains isolated from 50 blood cultures that cause septicemic diseases. The results revealed t...

주제어

참고문헌 (40)

  1. Anderl, J. N., M. J. Franklin, and P. S. Stewart. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44: 1818-1824 

  2. Arciola, C. R., L. Baldassarri, and L. Montanaro. 2001. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol. 39: 2151-2156 

  3. Baselga, R., J. Albizu, M. De la Cruz, E. Del Cacho, M Barberan, and B. Amorena. 1993. Phase variation of slime production in Staphylococcus aureus: Implications in colonization and virulence. Infect. Immun. 61: 4857-4862 

  4. Bezek, D. M. 1998. Genus identification and antibiotic susceptibility patterns of bacterial isolates from cows with acute mastitis in a practice population. J. Am. Vet. Med. Assoc. 212: 404-406 

  5. Chambers, H. F. 1988. Methicillin-resistant staphylococci. Clin. Microbiol. Rev. 1: 173-186 

  6. Chang, M. M. and K. Merritt. 1992. Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. J. Biomed. Mater. Res. 26: 197-207 

  7. Cho, S. H., K. Naber, J. Hacker, and W. Ziebuhr. 2002. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int. J. Antimicrob. Agents 19: 570-575 

  8. Christensen, G. D., W. A. Simpson, A. L. Bisno, and E. H. Beachey. 1982. Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37: 318-326 

  9. Christensen, G. D., W. A. Simpson, J. J. Younger, L. M. Baddour, F. F. Barrett, D. M. Melton, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22: 996-1006 

  10. Christensen, G. D., L. Baldassarri, and W. A. Simpson. 1994. Colonization of medical devices by coagulase-negative staphylococci, pp. 45-78: In A. L. Bisno and F. A. Waldvogel (eds.), Infections Associated with Indwelling Medical Devices, 2nd Ed. ASM Press, Washington, D.C., U.S.A 

  11. Chung, T. w., U. H. Jin, and C. H. Kim. 2003. Salmonella typhimurium LPS confers its resistance to antibacterial agents of baicalin of Scutellaria baicalensis george and novobiocin: Complementation of the rfaE gene required for ADP-L-glycero-D-manno-heptose biosynthesis of lipopolysaccharide. J. Microbiol. Biotechnol. 13: 564-570 

  12. Emori, T. G. and R. P. Gaines. 1993. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 6: 428-442 

  13. Frebourg, N. B., S. Lefebvre, S. Baert, and J. F. Lemeland. 2000. PCR-based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J. Clin. Microbiol. 38: 877-880 

  14. Galdbart, J. O., J. Allignet, H. S. Tung, C. Ryden, and N. El Solh. 2000. Screening for Staphylococcus epidermidis markers discriminating skin-flora strains and those responsible for infections of joint prostheses. J. Infect. Dis. 182: 351-355 

  15. Gerke, C., A. Kraft, R. SliBmuth, O. Schweitzer, and F. G6tz. 1998. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin (PIA). J. Biol. Chem. 273: 18586-18593 

  16. Gristina, A. G, P. Naylor, and Q. Myrvik. 1988. Infections from biomaterials and implants: A race for the surface. Med. Prog. Technol. 14: 205-224 

  17. Heilmann, C., C. Gerke, F. Perdreau-Remington, and F. Gotz. 1996. Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64: 277-282 

  18. Heilmann, C., O. Schweitzer, C. Gerke, N. Vanittanakom, D. Mack, and F. Gotz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083-1091 

  19. Heilmann, C., M. Hussain, G Peters, and F. Gotz. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24: 1013-1024 

  20. Henry, S. L. and K. P. Galloway. 1995. Local antibacterial theraphy for the management of orthopaedic infections. Pharmacokinetic considerations. Clin. Pharmacokinet. 29: 36-45 

  21. Hussain, M., M. Heilmann, C. von Eiff, F. Pedreau-Remington, and G. Peters. 1997. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65: 519-524 

  22. Jirku, V., J. Masak, and A. Cejkova. 2001. Reduced susceptibility of a model Saccharomyces cerevisiae biofilm to osmotic upshifts. J. Microbiol. Biotechnol. 11: 17-20 

  23. Kloos, W. E. and T. L. Bannerman. 1994. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 7: 117-140 

  24. Lewis, K. 2001 Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45: 999-1007 

  25. MaCK, D., W. Fischer, A. Krokotsch, K. Leopold, R. Hartmann, H. Egge, and R. Laufs. 1996. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear ${\beta}$ -1,6-linked glucosaminoglycan: Purification and structural analysis. J. Bacteriol. 178: 175-183 

  26. Nilsson, M., L. Frykberg, J. J. Flock, L. Pei, M. Lindberg, and B. Gruss. 1998. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66: 2666-2673 

  27. Potera, C. 1999. Forging a link between biofilms and disease. Science 283: 1837-1838 

  28. Rupp, M. E. and G. L. Archer. 1994. Coagulase-negative staphylococci: Pathogens associated with medical progress. Clin. Infect. Dis. 19: 231-245 

  29. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., U.S.A 

  30. Schumacher-Perdreau, P., C. Heilmann, G Peters, F. Gotz, and G. Pulverer. 1994. Comparative analysis of a biofilmforming Staphylococcus epidermidis strain and its adhesionpositive, accumulation-negative mutant M7. FEMS Microbial. Lett. 117: 71-78 

  31. Shin, J. W, J. K. Kang, K. J. Jang, and K. Y. Kim. 2002. Intestinal colonization characteristics of Lactobacillus spp. isolated from chicken cecum and competitive inhibition against Salmonella typhimurium. J. Microbiol. Biotechnol. 12: 576-582 

  32. Stewart, P. S. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292: 107-113 

  33. Stone, G, P. Wood, L. Dixon, M. Keyhan, and A. Matin. 2002. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob. Agents Chemother. 46: 2458-2461 

  34. Tack, K. J. and L. D. Sabath. 1985. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31: 204-210 

  35. Tanaka, G, M. Shigeta, H. Komatsuzawa, M. Sugai, H. Suginaka, and T. Usui. 1999. Effect of the growth rate of Pseudomonas aeruginasa biofilms on the susceptibility to antimicrobial agents: Beta-Iactams and tluoroquinolones. Chemotherapy 45: 28-36 

  36. Van de Belt, H., D. Neut, W Schenk, J. R. van Horn, H. C. van Der Mei, and H. C. Busscher. 2001. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethracrylate bone cements. Biomaterials 22: 1607-1611 

  37. Walters III, M. C., F. Roe, A. Bugnicourt, M. J. Franklin, and P. S. Stewart. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprotloxacin and tobramycin. Antimicrob. Agents Chemother. 47: 317-323 

  38. Zabinski, R. A., K. J. Walker, A. J. Larsson, J. A. Moody, G W. Kaatz, and J. C. Rotschafer. 1995. Effect of aerobic and anaerobic environments on anti staphylococcal activities of five fluoroquinolones. Antimicrob. Agents Chemother. 39: 507-512 

  39. Ziebuhr, W, C. Heilmann, F. G6tz, P. Meyer, K. Wilms, E. Straube, and J. Hacker. 1997. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890-896 

  40. Ziebuhr, W, V. Krimmer, S. Rachid, J. Loessner, F. Gotz, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: Evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbial. 32: 345-356 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로