$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

To elucidate the question of whether biofilm formed by the intercellular adhesion (ica) gene cluster has influences on antibiotic resistance in Staphylococcus epidermidis, we compared 124 skin strains with strains isolated from 50 blood cultures that cause septicemic diseases. The results revealed that the blood culture isolates were more resistant to the antibiotics tested than the saprophytic isolates. Moreover, antibiotic multiresistance was more prevalent in the clinical isolates. In the blood culture isolates, $46\%$ of the strains were resistant to three or more antibiotics, whereas only $12\%$ of the saprophytic isolates were resistant to three or more antibiotics. Interestingly, these characteristics were highly correlated with the biofilm formed by the ica gene cluster. In biofilm-producing strains, $84\%$ of the blood culture isolates and $44\%$ of the saprophytic isolates were antibiotic multiresistant, whereas only $22\%=;and\;9\%$, respectively, were antibiotic multiresistant in biofilm-nonproducing strains. Additionally, in the biofilm-producing ica-positive strains, $89\%$ of the blood culture isolates and $57\%$ of the saprophytic isolates were antibiotic multiresistant. However, the rate of the antibiotic multiresistance in the ica-negative strains was very low, thus indicating that the biofim formed by the lea gene cluster in S. epidermidis is an important pathogenic factor in association with the antibiotic multiresistance.

참고문헌 (40)

  1. Arciola, C. R., L. Baldassarri, and L. Montanaro. 2001. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol. 39: 2151-2156 
  2. Bezek, D. M. 1998. Genus identification and antibiotic susceptibility patterns of bacterial isolates from cows with acute mastitis in a practice population. J. Am. Vet. Med. Assoc. 212: 404-406 
  3. Galdbart, J. O., J. Allignet, H. S. Tung, C. Ryden, and N. El Solh. 2000. Screening for Staphylococcus epidermidis markers discriminating skin-flora strains and those responsible for infections of joint prostheses. J. Infect. Dis. 182: 351-355 
  4. Henry, S. L. and K. P. Galloway. 1995. Local antibacterial theraphy for the management of orthopaedic infections. Pharmacokinetic considerations. Clin. Pharmacokinet. 29: 36-45 
  5. Jirku, V., J. Masak, and A. Cejkova. 2001. Reduced susceptibility of a model Saccharomyces cerevisiae biofilm to osmotic upshifts. J. Microbiol. Biotechnol. 11: 17-20 
  6. Kloos, W. E. and T. L. Bannerman. 1994. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 7: 117-140 
  7. Nilsson, M., L. Frykberg, J. J. Flock, L. Pei, M. Lindberg, and B. Gruss. 1998. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66: 2666-2673 
  8. Stewart, P. S. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292: 107-113 
  9. Ziebuhr, W, C. Heilmann, F. G6tz, P. Meyer, K. Wilms, E. Straube, and J. Hacker. 1997. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890-896 
  10. Heilmann, C., O. Schweitzer, C. Gerke, N. Vanittanakom, D. Mack, and F. Gotz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083-1091 
  11. Rupp, M. E. and G. L. Archer. 1994. Coagulase-negative staphylococci: Pathogens associated with medical progress. Clin. Infect. Dis. 19: 231-245 
  12. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., U.S.A 
  13. Chang, M. M. and K. Merritt. 1992. Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. J. Biomed. Mater. Res. 26: 197-207 
  14. Shin, J. W, J. K. Kang, K. J. Jang, and K. Y. Kim. 2002. Intestinal colonization characteristics of Lactobacillus spp. isolated from chicken cecum and competitive inhibition against Salmonella typhimurium. J. Microbiol. Biotechnol. 12: 576-582 
  15. Zabinski, R. A., K. J. Walker, A. J. Larsson, J. A. Moody, G W. Kaatz, and J. C. Rotschafer. 1995. Effect of aerobic and anaerobic environments on anti staphylococcal activities of five fluoroquinolones. Antimicrob. Agents Chemother. 39: 507-512 
  16. Gristina, A. G, P. Naylor, and Q. Myrvik. 1988. Infections from biomaterials and implants: A race for the surface. Med. Prog. Technol. 14: 205-224 
  17. Heilmann, C., C. Gerke, F. Perdreau-Remington, and F. Gotz. 1996. Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64: 277-282 
  18. Stone, G, P. Wood, L. Dixon, M. Keyhan, and A. Matin. 2002. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob. Agents Chemother. 46: 2458-2461 
  19. Walters III, M. C., F. Roe, A. Bugnicourt, M. J. Franklin, and P. S. Stewart. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprotloxacin and tobramycin. Antimicrob. Agents Chemother. 47: 317-323 
  20. Ziebuhr, W, V. Krimmer, S. Rachid, J. Loessner, F. Gotz, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: Evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbial. 32: 345-356 
  21. Anderl, J. N., M. J. Franklin, and P. S. Stewart. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44: 1818-1824 
  22. Lewis, K. 2001 Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45: 999-1007 
  23. Schumacher-Perdreau, P., C. Heilmann, G Peters, F. Gotz, and G. Pulverer. 1994. Comparative analysis of a biofilmforming Staphylococcus epidermidis strain and its adhesionpositive, accumulation-negative mutant M7. FEMS Microbial. Lett. 117: 71-78 
  24. Tack, K. J. and L. D. Sabath. 1985. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31: 204-210 
  25. Christensen, G. D., W. A. Simpson, A. L. Bisno, and E. H. Beachey. 1982. Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37: 318-326 
  26. Tanaka, G, M. Shigeta, H. Komatsuzawa, M. Sugai, H. Suginaka, and T. Usui. 1999. Effect of the growth rate of Pseudomonas aeruginasa biofilms on the susceptibility to antimicrobial agents: Beta-Iactams and tluoroquinolones. Chemotherapy 45: 28-36 
  27. Chambers, H. F. 1988. Methicillin-resistant staphylococci. Clin. Microbiol. Rev. 1: 173-186 
  28. Cho, S. H., K. Naber, J. Hacker, and W. Ziebuhr. 2002. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int. J. Antimicrob. Agents 19: 570-575 
  29. Heilmann, C., M. Hussain, G Peters, and F. Gotz. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24: 1013-1024 
  30. MaCK, D., W. Fischer, A. Krokotsch, K. Leopold, R. Hartmann, H. Egge, and R. Laufs. 1996. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear ${\beta}$-1,6-linked glucosaminoglycan: Purification and structural analysis. J. Bacteriol. 178: 175-183 
  31. Christensen, G. D., W. A. Simpson, J. J. Younger, L. M. Baddour, F. F. Barrett, D. M. Melton, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22: 996-1006 
  32. Potera, C. 1999. Forging a link between biofilms and disease. Science 283: 1837-1838 
  33. Emori, T. G. and R. P. Gaines. 1993. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 6: 428-442 
  34. Gerke, C., A. Kraft, R. SliBmuth, O. Schweitzer, and F. G6tz. 1998. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin (PIA). J. Biol. Chem. 273: 18586-18593 
  35. Frebourg, N. B., S. Lefebvre, S. Baert, and J. F. Lemeland. 2000. PCR-based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J. Clin. Microbiol. 38: 877-880 
  36. Van de Belt, H., D. Neut, W Schenk, J. R. van Horn, H. C. van Der Mei, and H. C. Busscher. 2001. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethracrylate bone cements. Biomaterials 22: 1607-1611 
  37. Christensen, G. D., L. Baldassarri, and W. A. Simpson. 1994. Colonization of medical devices by coagulase-negative staphylococci, pp. 45-78: In A. L. Bisno and F. A. Waldvogel (eds.), Infections Associated with Indwelling Medical Devices, 2nd Ed. ASM Press, Washington, D.C., U.S.A 
  38. Hussain, M., M. Heilmann, C. von Eiff, F. Pedreau-Remington, and G. Peters. 1997. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65: 519-524 
  39. Baselga, R., J. Albizu, M. De la Cruz, E. Del Cacho, M Barberan, and B. Amorena. 1993. Phase variation of slime production in Staphylococcus aureus: Implications in colonization and virulence. Infect. Immun. 61: 4857-4862 
  40. Chung, T. w., U. H. Jin, and C. H. Kim. 2003. Salmonella typhimurium LPS confers its resistance to antibacterial agents of baicalin of Scutellaria baicalensis george and novobiocin: Complementation of the rfaE gene required for ADP-L-glycero-D-manno-heptose biosynthesis of lipopolysaccharide. J. Microbiol. Biotechnol. 13: 564-570 

이 논문을 인용한 문헌 (7)

  1. 2006. "" Journal of microbiology and biotechnology, 16(11): 1837~1840 
  2. 2006. "" Journal of microbiology and biotechnology, 16(1): 109~117 
  3. 2006. "" Journal of microbiology and biotechnology, 16(8): 1301~1305 
  4. 2006. "" Journal of microbiology and biotechnology, 16(9): 1377~1383 
  5. 2007. "" Journal of microbiology and biotechnology, 17(1): 146~153 
  6. 2007. "" Journal of microbiology and biotechnology, 17(10): 1733~1737 
  7. 2008. "" Journal of microbiology and biotechnology, 18(1): 28~34 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일