$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The biomass of the brown seaweed, Ecklonia, was used to remove Cr(VI) from wastewater. Previously, Cr(VI) was removed through its reduction to Cr(III) when brought into contact with the biomass. In this study, the effects of ionic strength, background electrolytes, and Cr(III), Ni(II), Zn(II), and Fe(III) on the Cr(VI) reduction were examined. An increased ionic strength inhibited the Cr(VI) reduction. The presence of other heavy metals, such as Cr(III), Ni(II), or Zn(II), only slightly affected the Cr(VI) reduction, while Fe(III) enhanced the reduction. Although the above various parameters could affect the reduction rate of Cr(VI) by Ecklonia biomass, these effects were relatively smaller than those of pH and temperature. In addition, the previously derived rate equation was found to be applicable over a range of ionic strengths and with different background electrolytes. In conclusion, Ecklonia, bioniass may be a good candidate as a biosorbent for the removal of Cr(VI) from wastewaters containing various other impurities, and scale-up to a practical process may be accomplished using the previously derived rate equation.

참고문헌 (20)

  1. Chilwa, E. M. N. and Y.-T. Wang. 1997. Hexavalent chromium reduction by Bacillus sp. in a packed-bed bioreactor. Environ. Sci. Technol. 31: 1446-1451 
  2. Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods jar the Examination of Water and Wastewater, pp. 366-368. 20th Ed. American Public Health Association, American Water Work Association, and Water Environment Federation, Washington DC, U.S.A 
  3. Eary, L. E. and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22: 972-977 
  4. Fendorf, S. E. and G Li. 1996. Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol. 30: 1614-1617 
  5. Jeon, C., J. Y. Park, and Y. J. Yoo. 2001. Biosorption model for binary adsorption sites. J. Microbiol. Biotechnol. 11: 781-787 
  6. Sag, Y., D. Ayikel, Z. Aksu, and T. Kutsal. 1998. A comparative study for the simultaneous biosorption of Cr(Vl) and Fe(III) on C. vulgaris and R. arrhizus: Application of the competitive, adsorption models. Process Biochem. 33: 273-281 
  7. Yun, Y.-S. 2004. Characterization of functional groups of protonated Sargassum polycystum biomass capable of binding protons and metal ions. J. Microbiol. Biotechnol. 14: 29-34 
  8. Aksu, Z., U. Ayikel, and T. Kutsal. 1997. Application of multi component adsorption isotherms to simultaneous biosorption of iron (III) and chromium (VI) on C. vulgaris. J. Chem. Technol. Biot. 70: 368-378 
  9. Yun, Y.-S., D. Park, J. M. Park, and B. Volesky. 2001. Biosorption of trivalent chromium on the brown seaweed biomass. Environ. Sci. Technol. 35: 4353-4358 
  10. Cho, D. H., M. H. Yoo, and E. Y. Kim. 2004. Biosorption of lead ($Pb^{2+}$) from aqueous solution by Rhodotorula aurantiaca. J. Microbial. Biotechnol. 14: 250-255. 
  11. Park, D., Y.-S. Yun, and J. M. Park. 2004. Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Water Res. (submitted) 
  12. Schiewer, S. and B. Volesky. 1997. Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Environ. Sci. Technol. 31: 2478-2485 
  13. Anderson, R. A. 1997. Chromium as an essntial nutrient for humans. Regul. Toxicol. Pharm. 26: 835-841 
  14. Kratochvil, D., P. Pimentel, and B. Volesky. 1998. Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environ. Sci. Technol. 32: 2693-2698 
  15. Sengupta, A. K.and D. Clifford. 1986. Chromate ion exchange mechanism for cooling water. Ind. Eng. Chem. Fund. 25: 249-258 
  16. Ishibashi, Y., C. Cervantes, and S. Silver. 1990. Chromium reduction in Pseudomonas putida. Appl. Environ. Microb. 56: 2268-2270 
  17. Khattar, J. I. S., T. A. Sarma, D. P. Singh, and A. Sharma. 2002. Bioaccumulation of chromium ions by immobilized cells' of a filamentous cyanobacterium, Anabaena variabilis. J. Microbiol. Biotechnol. 12: 137-141 
  18. Yun, Y.-S. and B. Volesky. 2003. Modeling of lithium interference in cadmium biosorption. Environ. Sci. Technol. 37: 3601-3608 
  19. Park, D., Y.-S. Yun, and J. M. Park. 2004. Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Environ. Sci. Technol. 38: 4860-4864 
  20. Baral, A. and R. D. Engelken. 2002. Chromium-based regulations and greening in metal finishing industries in the USA. Environ. Sci. Pol. 5: 121-133 

이 논문을 인용한 문헌 (3)

  1. 2006. "" Journal of microbiology and biotechnology, 16(11): 1720~1727 
  2. Park, Donghee ; Park, Jong Moon 2006. "Removal of Hexavalent Chromium by using Biomass" 화학공학 = Korean chemical engineering research, 44(2): 107~113 
  3. 2007. "" Journal of microbiology and biotechnology, 17(5): 812~821 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일