$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

혐기성 해양환경에서 철 환원세균에 의한 유기물 분해 및 생물정화
Significance of Dissimilatory Fe(III) Reduction in Organic Matter Oxidation and Bioremediation of Environmental Contaminants in Anoxic Marine Environments 원문보기

바다 : 한국해양학회지 = The sea : the journal of the Korean society of oceanography, v.10 no.3, 2005년, pp.145 - 153  

현정호 (한국해양연구원, 해양바이오 신소재연구사업단)

초록
AI-Helper 아이콘AI-Helper

산소가 고갈된 혐기성 환경의 유기물 분해 및 물질순환에서 철 환원반응의 생태/환경적 중요성에 대해 고찰하였다. 다양한 해양환경에서 유기물 분해 시 철 환원이 차지하는 중요성은 미약한 수준에서 거의 $100\%$에 이르기까지 그 범위가 극단적으로 다양하게 나타났다. 일반적으로 철 환원은 Fe(III)의 농도가 높은 곳에서 황산염 환원보다 중요한 유기물 분해 경로로 나타나, 유기물 분해에서 철 환원의 중요성은 철 환원세균이 이용 가능한 Fe(III)의 공급정도에 의해 결정되는 것으로 인식되었다. 산소공급이 미약한 연안혐기성 퇴적토 내에서 Fe(III)의 공급은: (1)조석에 의한 퇴적물 내 공극수의 교환(tidal flushing): (2)저서동물에 의한 생물교란: (3)식생의 유무에 따른 퇴적물의 산화/환원 상태의 변화 등에 의해 주로 영향을 받는 것으로 나타났다 철 환원세균에 의한 유기물 분해 및 다양한 금속원소의 전환기능을 이용한 특정 유기오염원과 금속오염원의 생물정화는 우리나라와 같이 부영양화된 연안생태환경의 개선 및 독성 유t무기 오염원의 생물정화 등 연안역의 환경친화적 관리가 절실히 요구되는 환경에서 생태/환경공학 분야의 유용한 해결수단으로 간주된다.

Abstract AI-Helper 아이콘AI-Helper

I reviewed an ecological and environmental significance of microbial carbon respiration coupled to dis-similatory reduction of fe(III) to Fe(II) which is one of the major processes controlling mineralization of organic matter and behavior of metals and nutrients in various anaerobic environments. Re...

주제어

참고문헌 (67)

  1. Aller, R.C., J.E. Mackin, and R.T. Cox, Jr., 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implication for the genesis of ironstones. Cont. Shelf. Res., 6: 263-289 

  2. Anderson, R.T., J.N. Rooney-Varga, C.V. Gaw, and D.R. Lovley, 1998. Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol., 32: 1222-1229 

  3. Blackburn, T.H., B.A. Lund, and M. Krom, 1988. C- and N-mineralization in the sediments of earthen marine fishponds. Mar. Ecol. Prog. Ser., 44: 221-227 

  4. Bostrom, B., M. Jansson, and C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol., 18: 5-59 

  5. Caldwell, M.E., R.M. Garrett, R.C. Prince, and J.M. Suflita, 1998. Anaerobic biodegradation of long-chain n-alkanes under sulfate reducing conditions. Environ. Sci. Technol., 32: 2191-2195 

  6. Canfield, D.E., B. Thamdrup and J.W. Hansen, 1993a. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta, 57: 3867-3883 

  7. Canfield, D.E., B.B. Jorgensen, H. Fossing, R Glud, J. Gundersen, N.B. Ramsing, B. Thamdrup, J.W. Hansen, L.P. Nielsen, and P.O.J. Hall, 1993b. Pathways of organic carbon oxidation in three continental margin sediments. Mar.Geol., 113: 27-40 

  8. Canfield, D.E., 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol., 114: 315-329 

  9. Capone, D.G. and R. Kiene, 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism. Limnol. Oceanogr., 33: 725-749 

  10. Cerniglia, C.E., and M.A. Heitkamp, 1989. Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In: Metabolism of polycyclic aromatic hydrocarbons in the aquatic envirorunent, edited by Varanasi, U., CRC Press, Boca Raton, FL., pp. 41-68 

  11. ChapeIIe, P.H., and D.R. Lovley, 1992. Competitive exclusion of sulfate reduction by Fe(II)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Groundwater, 30: 29-36 

  12. Christensen, P.B., S. Rysgaard, N.P. Sloth, T. Dalsgaard, and S. Schwarter, 2000. Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat. Microb. Ecol., 21: 73-84 

  13. Coates, J.D., J. Woodard, J. Allen, P. Philp, and D.R. Lovley, 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbour sediments. Appl. Environ. Microbiol., 63: 3589-3593 

  14. Coleman, M.L., D.B. Hedrick, D.R. Lovley, D.C. White, and K. Pye. 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature, 361: 436-438 

  15. Dua, M., A. Singh, N. Sethunsthan, and A.K. Johri, 2002. Biotechnology and bioremediation: successes and limitation. Appl. Microbiol. Biotechnol., 59: 143-152 

  16. Fenchel, T. G.M. King, and T.H. Blackburn, 1998. Bacterial biogeochemistry: the ecophysiology of mineral cycling. Academic Press, San Diego, p. 307 

  17. Fredrickson, J.K., and Y.A. Gorby, 1996. Environmental processes mediated by iron-reducing bacteria Curr. Opin. Biotech., 7: 287-294 

  18. Gottschalk, G, 1986. Bacterial metabolism. Springer-Verlag, New York, p. 359 

  19. Gribsholt, B., J.E. Kostka, and E. Kristensen, 2003. Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Mar. Ecol. Prog. Ser.,. 259: 237-251 

  20. Harms, G., K. Zengler, R. Rabus, F. Aeckersberg, D. Minz, R. Rossello-Mora, and F. Widdel. 1999. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl. Environ. Microbiol., 65: 999-1004 

  21. Hedges, J.l., and R.G. Keil, 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., 49: 81-115 

  22. Hines, M.E., D.A. Bazylinski, J.B. Tugel, and W.B. Lyons, 1991. Anaerobic microbial biogeochemistry from two vasins in the Gulf of Maine: evidence for iron and manganese reduction. Estuarine Coastal Shelf Sci., 32: 313-324 

  23. Holmer, M., B. Gribsholt and E. Kristensen, 2002. Effects of sea level rise on growth of Spartina anglica and oxygen dynamics in rhizosphere and salt marsh sediments. Mar. Ecol. Prog. Ser., 225: 197-204 

  24. Howarth, R.W., 1993. Microbial processes in salt-marsh sediments. In: Aquatic microbiology: An ecological approach, edited by Ford, T.E., Blackwell, pp. 239-259 

  25. Hyun, J.-H., H.K. Lee, and K.K. Kwon, 2003. Sulfate reduction in marine environments: its controlling factors and relative significance in mineralization of organic matter. [The Sea] J. Kor. Soc. Oceanogr., 8: 210-224 

  26. Jacobsen, M.E., 1994. Chemical and biological mobilization of Fe(III) in marsh sediments. Biogeochem., 25: 41-60 

  27. Jahnke, R.A., and D.B., Craven, 1995. Quantifying the role of heterotrophic bacteria in the carbon cycle: A need for respiration rate measurements. Limnol. Oceanogr., 40: 436-441 

  28. Jensen, M.M., B. Thamdrup, S. Rysgaard, M. Holmer, and H. Fossing. 2003. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochem., 65: 295-317 

  29. Johnson, D.B., 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol., 27: 307-317 

  30. Kazumi, J., M.M. Haggblom, and L.Y. Young, 1995. Degradation of monochlorinated and nonchlorinated aromatic compounds under iron-reducing conditions. Appl. Environ. Microbiol., 61: 4069-4073 

  31. King, G.M., M.J. Klug, R.G. Wiegert, and A.G. Chalmers, 1982. Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia Salt Marsh. Science, 218: 61-63 

  32. King. G.M., 1990. Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments. FEMS Microbiol. Ecol., 73: 131-138 

  33. King, G.M., D. Kirchman, A.A. Salyer, W Schlesinger, and J.M. Tiedje, 2000. Global environmental change. Am. Soc. Microbiol., Washington D.C., 12 pp 

  34. Koch, M.S., I.A. Mendelssohn, and K. L. McKee, 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnol. Oceanogr., 35: 399-408 

  35. Koretsky, C.M., C.M. Moore, K.L. Lowe, C. Meile, T.J. DiChristina, and P. Van Cappellen, 2003. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochem., 64: 179-203 

  36. Kostka, J.E., A. Roychoudhury and P. Van Cappellen, 2002a. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry, 60: 49-76 

  37. Kostka, J. E., B. Gribsholt, E. Petrie, D. Dalton, H. Skelton and E. Kristensen, 2002b. The rates and pathways of carbon oxidation in biotirbated saltmarsh sediments. Limnol. Oceanogr., 47: 230-240 

  38. Kristensen, E., F. O. Andersen, N. Holmboe, M. Holmer and N. Thongtham, 2000. Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand. Aquat. Microb. Ecol., 22: 199-213 

  39. Kusel, K., T. Dorsch, G. Acker, and E.Stackebrandt, 1999. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphillum cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl. Environ. Microbiol., 65: 3633-3640 

  40. LaRock, P.A., J.-H. Hyun, S. Boutelle, W.C. Burnett, and C.D. Hull, 1996. Bacterial mobilization of polonium. Geochim. Cosmochim. Acta, 60: 4321-4328 

  41. Lovley, D.R., and E.J.P. Phillips, 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol., 51: 683-689 

  42. Lovley, D.R., and E.J.P. Phillips, 1987. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduciton in sediments. Appl. Environ. Microbiol., 53: 2636-2641 

  43. Lovley, D.R., J.F. Stolz, G.L. Nord, and E.J.P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330: 252-254 

  44. Lovley, D.R., and E.J.P. Phillips, 1988. Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiol. J., 6: 145-155 

  45. Lovley, D.R, M.J. Baedecker, D.J. Lonergan, I.M. Cozzarelli, E.J.P. Phillips, and D.I. Siegel, 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature, 339: 297-299 

  46. Lovley, D.R, 1990. Magnetite formation during microbial dissimilatory iron reduction. In: Iron biominerals, edited by Frankel, R.B., and R.P. Blakemore, Plenum Publishing Co., New York. pp. 151-166 

  47. Lovley, D.R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev., 55: 259-287 

  48. Lovley, D.R., E.J.P. Phillips, Y.A. Gorby, and E.R. Landa, 1991. Microbial reduction of uranium. Nature, 350: 413-416 

  49. Lovley, D.R., and E.J.P. Phillips, 1992. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol., 58: 850-856 

  50. Lovley, D.R., E.E. Roden, E.J.P. Phillips, and J.C. Woodward, 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol., 113: 41-53 

  51. Lovley, D.R., J.C. Woodward, and F.H. Chapelle, 1994. Stimulated anoxic biodegradation of aromatic hydrocarbon using Fe(III) ligands. Nature, 370: 128-131 

  52. Lovley, D.R., and J.D. Coates, 1997. Bioremedation of metal contamination. Curr. Opin. Biotech., 8: 285-289 

  53. Lovley, D.R, 2000. Environmental microbe-metal interactions. ASM Press, Washington, D.C., 395 pp 

  54. Lowe, K.L., T.J. Dichristina, A.N. Roychoudhury, and P. Van Cappellen, 2000. Microbiological and geochemical characterization of microbial Fe(III) reduction in salt marsh sediments. Geomicrobiol. J., 17: 163-178 

  55. Mortimer, R.J.G., M.K. Coleman, and J.E. Rae, 1997. Effect of bacteria on the elemental composition of early diagenetic siderite: implications for paleoenvironmental interpretations. Sedimentology. 44: 759-765 

  56. Nealson, K.H., and D. Saffarini, 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol., 48: 311-343 

  57. Nielsen, K., L.P. Nielsen and P. Rasmussen, 1995. Estuarine nitrogen retention independently estimated by the denitrification rate and mass balance methods: a study of Norsminde Fjord, Denmark. Mar. Ecol. Prog. Ser., 119: 275-283 

  58. Oremland, R.S., J.S. Blum, C.W. Culbertson, P.T. Visscher, L.G. Miller, P. Dowdle, and F.E. Strohmaier, 1994. Isolation, growth, and metabolism of an obligatory anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol., 60: 3011-3019 

  59. Petrie, L., N.N. North, S.L. Dollhopf, D.L. Balkwill, and J.E. Kostka, 2003. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl. Environ. Microbiol., 69: 7467-7479 

  60. Rabus, R., R. Nordhaus, W. Ludwig, and F. Widdel, 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol., 59: 1444-1451 

  61. Reinhard, M., S. Shang, P.K. Kitanidis E. Orwin G.D. Hopkins, and C.A. Lebron, 1997. In situ BTEX biotransformation underen-hanced nitrate- and sulfate reducing conditions. Environ. Sci. Technol., 31: 28-36 

  62. Rueter, P., R. Rabus, H. Wilkes, F. Aeckersberg, F. Rainey, H.W. Jannasch, and F. Widdel, 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372: 455-458 

  63. Rysgaard, S., B. Thamdrup, N. Risgaard-Petersen, H. Fossing, P. Berg, P.B. Christensen, and T. Dalsgaard, 1998. Seasonal carbon and nutrient mineralization in a high-Arctic coastal maine sediment, Young Sound, northeast Greenland. Mar. Ecol. Prog. Ser., 175: 261-276 

  64. Shen, H., H. Prichard, and G.W. Sewell, 1996. Microbial reduction of $Cr^{6+}$ during anaerobic degradation of benzonate. Environ. Sci. Technol., 30: 1667-1674 

  65. Thamdrup, B. 2000. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol., 16: 41-84 

  66. Thamdrup, B., and D.E. Canfield, 2000. Benthic respiration in aquatic sediments. In: Methods in ecosystem science, edited by Jackson, R.B., O.E. Sala, H.A. Mooney, and R.W. Howarth, Springer, New York, pp. 86-103 

  67. Valiela, I., J.M. Teal, and W.G. Deuser, 1978. The nature of growth forms in the salt marsh grass Spartina alterniflora. Am. Naturalist, 112: 461-470 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로