$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

이상 랩온어칩에서 사용된 생물분리 방법과 그 예를 소개하였다. 랩온어칩에서는 수백 마이크로미터 이하의 미세 채널을 사용하므로 유사한 크기의 채널을 사용하는 capillary electrophoresis에서 사용되었던 기법들이 가장 많이 활용되어왔으며, 랩온어칩 내에서 물질분리를 위한 기본 방법으로 적용되어왔다. 현재까지 CE에 사용되었던 기법들은 모두 랩온어칩 상에 구현된 바 있으며, 이러한 기술들은 랩온어칩의 활용 가능성 및 활용 분야 증대에 크게 기여하였다. 이외에도, laminar flow의 특성을 이용하거나, 막을 제작하거나, 추출 기법을 활용하는 등의 다양한 시도가 있었다. 그러나, high-throughput, 이동형 장비를 지향하는 랩온어칩에서 고전압을 사용하는 경우 활용에 제약을 가져올 수 있어, 용도에 맞는 적절한 분리기술의 개발 및 선택이 랩온어칩의 활용 가능성을 결정짓는 중요한 요인이 될 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Lab-on-a-chip is a miniaturized analytical device in which all of the procedures for the analysis of molecules are carried out, such as pretreatment, reaction, separation, detection, etc. Lab-on-a-chip has increasing concern as a device not only for rapid detection of molecules but also for high thr...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 1990년대 초 Manz, Harrison, Ramsey 등이 화학 분석 시 스템을 소형화한 microchip을 처음 제시한 이래(1, 2) 랩온어칩 (lab-on-a-chip)에 대한 관심이 급증하였다. Micro-total analysis system (p-TAS) 또는 microfluidic device로도 명명되 는 랩온어칩은 시료의 전처리, 반응, 분리, 분석, 결과분석 등 특정 물질의 분석에 필요한 일련의 모든 과정을 하나 의 기판 위에 소형화시킴으로써, 필요한 장소에서 필요한 시기에 대상 물질의 분석을 즉각적으로 수행할 수 있도록 하는 것이 목적이다. 이를 위하여 실리콘이나 폴리머 재질 의 기판 위에 수백 micrometer 이하의 미세 채널을 제작하고 이용함으로써 기존의 분석방법에 비하여 다양한 장점을 가진다.
  • 이외에도 chromatography, 추출, filtration 등 물질의 분리에 필요한 다양한 기법들이 이미 랩온어칩상에서 구현되었다. 본 고 에서는 랩온어칩에 적용된 다양한 분리기술들 중 가장 많이 사용된 고전압을 이용한 분리 기법들의 간단한 원리와 랩온어칩에 적용한 예, 그리고 이외 랩온어칩에서 구현된 분리기법들을 정리하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (104)

  1. Manz, A., J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H. Ludi and H. M. Widmer (1992), Planar chips technology for miniaturization and integration of separation techniques into monitoring systems : Capillary electrophoresis on a chip, J. of Chrom. A 593, 243-252 

  2. Harrison, D. J., A. Manz, Z. Fan, H. Luedi and H. M. Widmer (1992), Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. Chem. 64, 1920-1925 

  3. Hadd, A. G., D. E. Raymond, J. W. Halliwell, S. C. Jacobson and J. M. Ramsey (1997), Microchip device for performing enzyme assays, Anal. Chem. 69, 3407-3412 

  4. Rodriguez, I., Y. Zhang, H. K. Lee and S. F. Y. Li (1997), Conventional capillary electrophoresis in comparison with short-capillary capillary electrophoresis and microfabricated glass chip capillary electrophoresis for the analysis of fluorescein isothiocyanate anti-human immunoglobulin G, J. of Chrom. A 781, 287-293 

  5. Zholkovskij, E. K. and J. H. Masliyah (2004), Hydrodynamic dispersion due to combined pressure-driven and electroosmotic flow through microchannels with a thin double layer, Anal. Chem. 76, 2708-2718 

  6. Bruin, G. J. M. (2000), Recent developments in electrokinetically driven analysis on microfabricated devices, Electrophoresis 21, 3931-3951 

  7. Guijt, R. M., E. Baltussen, G. van der Steen, H. Frank, H. Billiet, T. Schalkhammer, F. Laugere, M. Vellekoop, A. Berthold, L. Sarro and G. W. K. van Dedem (2001), Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis, Electrophoresis 22, 2537-2541 

  8. Guenat, O. T., D. Ghiglione, W. E. Morf and N. F. de Rooij (2001), Partial electroosmotic pumping in complex capillary systems Part 2: Fabrication and application of a micro total analysis system ( ${\mu}$ -TAS) suited for continuous volumetric nanotitrations, Sens. & Actuators B 72, 273-282 

  9. Liu, Y., R. S. Foote, C. T. Culbertson, S. C. Jacobson, R. S. Ramsey and J. M. Ramsey (2000), Electrophoretic separation of proteins on microchips, J. Microcolumn Separations 12, 407-411 

  10. Shultz-Lockyear, L. L., C. L. Colyer, Z. H. Fan, K. I. Roy and D. J. Harrison (1999), Effects of injector geometry and sample matrix on injection and sample loading in integrated capillary electrophoresis devices, Electrophoresis 20, 529-538 

  11. Effenhauser, C. S., A. Manz and H. M. Widmer (1993), Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights, Anal. Chem. 65, 2637-2642 

  12. Harrison, D. J., K. Flurl, K. Seiler, Z. Fan, C. S. Effenhauser and A. Manz (1993), Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science 261, 895-897 

  13. Jacobson, S. C., R. Hergenroder, L. B. Koutny, R. J. Warmack and J. M. Ramsey (1994), Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices, Anal. Chem. 66, 1107-1113 

  14. Jacobson, L. B. Koutny, S. C., R. Hergenroder, A. W. Moore, Jr., and J. M. Ramsey (1994), Microchip capillary electrophoresis with an integrated postcolumn reactor, Anal. Chem. 66, 3472-3476 

  15. Gai, H., L. Yu, Z. Dai, Y. Ma and B. Lin (2004), Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip, Electrophoresis 25, 1888-1894 

  16. Roddy, E. S., H. Xu and A. G. Ewing (2004), Sample introduction techniques for microfabricated separation devices, Electrophoresis 25, 229-242 

  17. Qian, S and H. H. Bau (2002), A chaotic electroosmotic stirrer, Anal. Chem. 74, 3616-3625 

  18. Salimi-Moosavi, H., T. Tang and D. J. Harrison (1997), Electroosmotic pumping of organic solvents and reagents in microfabricated reactor chips, J. Am. Chem. Soc. 119, 8716-8717 

  19. Seiler, K., D. J. Harrison and A. Manz (1993), Planar glass chips for capillary electrophoresis: Repetitive sample injection, quantitation, and separation efficiency, Anal. Chem. 65, 1481-1488 

  20. McDonald, J. C., D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller and G. M. Whitesides (2000), Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27-40 

  21. Hong, J. W., T. Fujii, M. Seki, T. Yamamoto and I. Endo (2001), Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip, Electrophoresis 22, 328-333 

  22. Chang, W.-J., D. Akin, M. Sedlak, M. R. Ladisch and R. Bashir (2003), Poly(dimethylsiloxane)(PDMS) and silicon hybrid biochip for bacterial culture, Biomed. Microdev. 5, 281-290 

  23. Unger, M. A., H.-P. Chou, T. Thorsen, A. Scherer and S. R. Quake (2000), Monolithic microfabricated valves and pumps by multilayer soft lithography, Science 288, 113-116 

  24. Whitesides, G. M., E. Ostuni, S. Takayama, X. Jiang and D. E. Ingber (2001), Soft lithography in biology and biochemistry, Annu. Rev. Biomed Eng. 3, 335-373 

  25. Yamaguchi, A., P. Jin, H. Tsuchiyama, T. Masuda, K. Sun, S. Matsuo and H. Misawa (2002), Rapid fabrication of electrochemical enzyme sensor chip using polydimethylsiloxane microfluidic channel, Anal. Chim. Acta 468, 143-152 

  26. Schmid, H. and B. Michel (2000), Siloxane polymers for high-resolution, high-accuracy soft lithography, Macromolecules 33, 3042-3049 

  27. Park, N. and J. H. Hahn (2003), PDMS lab-on-a-chip, Chem. World 43, 37-41 

  28. Ren, X., M. Bachman, C. Sims, G.P. Li and N. Allbritton (2001), Electroosmotic properties of microfluidic chamels composed of poly(dimethylsiloxane), J. Chrom. B 762, 117-125 

  29. Badal, M. Y., M. Wong, N. Chiem, H. Salimi-Moosave and D. J. Harrison (2002), Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated capillaries and microchips, J. Chrom. A 947, 277-286 

  30. Sui, Z. and J. B. Schlenoff (2003), Controlling electroosmotic flow in microchannels with pH-responsive polyelectrolyte multilayers, Langmuir 19, 7829-7831 

  31. Weston, A. and P. R. Brown (1997), HPLC and CE, p134, Academic Press, San Diego 

  32. Li, S. F. Y. (1992), Capillary electrophoresis, p1, Elsevier Science Publishers, Amsterdam 

  33. Jandik, P. and G. Bonn (1993), Capillary electrophoresis of small molecules and ions, p37, VCH Publishers, Inc., New York 

  34. Zhang, B., F. Foret and B. L. Karger (2000), A microdevice with integrated liquid junction for facile peptide and protein analysis by capillary electrophoresis/electrospray mass spectrometry, Anal. Chem. 72, 1015-1022 

  35. Qiu, H., J. Yan, X. Sun, J. Liu, W. Cao, X. Yang and E. Wang (2003), Microchip capillary electrophoresis with and integrated indium tin oxide electrode-based electrochemiluminescence detector, Anal. Chem. 75, 5435-5440 

  36. Wang, J., G. Chen, M. P. Chatrathi and M. Musameh (2004), Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector, Anal. Chem. 76, 298-302 

  37. Lee, H. -L and S. -C. Chen (2004), Microchip capillary electrophoresis with amperometric detection for several carbohydrates, Talanta 64, 210-216 

  38. Guihen, E. and J. D. Glennon (2005), Rapid separation of antimicrobial metabolites by microchip electrophoresis with UV linear imaging detection, J. Chrom. A 1071, 223-228 

  39. Stettler, A. R. and M. A. Schwarz (2005), Affinity capillary electrophoresis on microchips, J. Chrom. A 1063, 217-225 

  40. Cho, S. I., J. Shim, M.-S. Kim, Y.-K. Kim and D. S. Chung (2004), On-line sample cleanup and chital separation of gemifloxacin in a urinary solution using chital crown ether as a chital selector in microchip electrophoresis, J. Chrom. A 1055, 241-245 

  41. Terabe, S., K. Otsuka and T. Ando (1985), Electrokinetic chromatography with micellar solution and open-tubular capillary, Anal. Chem. 57, 834-841 

  42. Mwongela, S. M., A. Numan, N. L. Gill, R. A. Agbaria and I. M. Warner (2003), Separation of achital and chital analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography, Anal. Chem. 75, 6089-6096 

  43. Kim, J.-B. and S. Terabe (2003), On-line sample preconcentration techniques in micellar electrokinetic chromatography, J. Parm. & Biomed. Anal. 30, 1625-1643 

  44. Lin, S., A. S. Fischl, X. Bi and W. Parce (2003), Separation of phospholipids in microfluidic chip device: Application to high-throughput screening assays for lipid-modifying enzymes, Anal. Biochem. 314, 97-107 

  45. Collins, G. E. and Q. Lu (2001), Radionuclide and metal ion detection on a capillary electrophoresis microchip using LED absorbance detection, Sens. & Act. B 76, 244-249 

  46. Schure, M. R., R. E. Murphy, W. L. Klotz and W. Lau (1998), High-performance capillary gel electrochromatography with replaceable media, Anal. Chem. 70, 4985-4995 

  47. Petersen, J. R., A. O. Okorodudu, A. Mohammad and D. A. Payne (2003), Capillary electrophoresis and its application in the clinical laboratory, Clinica Chimica Acta 330, 1-30 

  48. Zhu, L., W. J. Stryjewski and S. A. Soper (2004), Multiplexed fluorescence detection in microfabricated devices with both time-resolved and spectral-discrimination capabilities using near-infrared fluorescence, Anal. Biochem. 330, 206-218 

  49. Ehrlich, D. J. and P. Matsudaira (1999), Microfluidic devices for DNA analysis, Tr. Biotechnol. 17, 315-319 

  50. Kim, D.-K. and S. H. Kang (2005), On-channel base stacking in microchip capillary gel electrophoresis for high-sensitivity DNA fragment analysis, J. Chrom. A 1064, 121-127 

  51. Mizukami, Y., D. Rajniak, A. Rajniak and M. Nishimura (2002), A novel microchip for capillary electrophoresis with acrylic microchannel fabricated on photosensor array, Sens. & Act. B 81, 202-209 

  52. Bartle, K. D. and P. Myers (2001), Theory of capillary electrochromatography, J. Chrom. A. 916, 3-23 

  53. Colon, L. A., G. Burgos, T. D. Maloney, J. M. Cintron and R. L. Rodriguez (2000), Recent progress in capillary electrochromatography, Electrophoresis 21, 3965-3993 

  54. Vanhoenacker, G., T. V. den Bosch, G. Rozing and P. Sandra (2001), Recent applications of capillary electrochromatography, Electrophoresis 22, 4064-4103 

  55. Zhang, X. and S. Huang (2001), Single step on-column frit making for capillary high-performance liquid chromatography using sol-gel technology, J. Chrom. A 910, 13-18 

  56. Ro, K. W., W.-J. Chang, H. Kim, Y.-M. Koo and J. H. Hahn (2003), Capillary electrochromatography and preconcentration of neutral compounds on poly(dimethylsiloxane) microchips, Electrophoresis 24, 3253-3259 

  57. Van den Bosch, S.E., S. Heemstra, J.C. Kraak and H. Poppe (1996), Experiences with packed capillary electrochromatography at ambient pressure, J. Chrom. A 755, 165-177 

  58. Chirica, G. S. and V. T. Remcho (2000), A simple procedure for the preparation of fritless colunms by entrapping conventional high performance liquid chromatography sorbents, Electrophoresis 21, 3093-3101 

  59. Svec, F., E. C. Peters, D. Sykora and J. M. J. Frechet (2000), Design of the monolithic polymers used in capillary electrochromatography columns, J. Chrom. A 887, 3-29 

  60. Dulay, M. T., R. P. Kulkami and R. N. Zare (1998), Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles, Anal. Chem. 70, 5103-5107 

  61. Fintschenko, Y., W.-Y. Choi, S. M. Ngola and T. J. Shepodd (2001), Chip eleclrochromatography of polycyclic aromatic hydrocarbons on an acrylate-based UV-initiated porous polymer monolith, Fresenius J. Anal. Chem. 371, 174-181 

  62. Kawamura, K., K. Otsuka and S. Terabe (2001), Capillary electrochromatographic enantioseparations using a packed capillary with a 3 ${\mu}m$ OD-type chiral packing, J. Chrom. A 924, 251-257 

  63. Slentz, B. E., N. A. Penner and F. E. Regnier (2002), Capillary electrochromatography of peptides on microfabricated poly (dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization, J. Chrom. A 948, 225-233 

  64. Zhang, W., L. Zhang, G. Ping, Y. Zhang and A. Kettrup (2001), Migration of neutral solutes by double stepwise gradient elution in capillary electrochromatography, J. Chrom. A 922, 277-282 

  65. Pusecker, K., J. Schewitz, P. Gfrorer, L.-H. Tseng, K. Albert and E. Bayer (1998), On-line coupling of capillary electrochromatography, capillary electrophoresis, and capillary HPLC with nuclear magnetic resonance spectroscopy, Anal. Chem. 70, 3280-3285 

  66. Ding, J. and P. Vouros (1997), Capillary electrochromatography and capillary electrochromatography-mass spectrometry for the analysis of DNA adduct mixtures, Anal. Chem. 69, 379-384 

  67. Thormann, W., J. Caslavska, S. Molteni and J. Chmelik (1992), Capillary isoelectric focusing with electroosmotic zone displacement and on-column multichannel detection, J. Chrom. A 589, 321-327 

  68. Mao, Q. and J. Pawliszyn (1999), Demonstration of isoelectric focusing on an etched quartz chip with UV absorption imaging detection, Analyst 124, 637-641 

  69. Raisi, F., P. Belgrader, D. A. Borkholder, A. E. Herr, G. J. kiritz, F. Pourhamadi, M. T. Tayler and M. A. Northrup (2001), Microchip isoelectric focusing using a miniature scanning detection system, Electrophoresis 22, 2291-2295 

  70. Wen, J., Y. Lin, F. Xiang, D. W. Matson, H. R. Udseth and R. D. Smith (2000), Microfabricated isoelectric focusing device for direct electrospray ionization-mass spectrometry, Electrophoresis 21, 191-197 

  71. Herr, A. E., J. I. Molho, K. A. Drouvalakis, J. C. Mikkelsen, P. J. Utz, J. G. Santiago and T. W. Kenny (2003), On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations, Anal. Chem. 75, 1180-1187 

  72. Li, Y., J. S. Buch, F. Rosenberger, D. L. DeVoe and C. S. Lee (2004), Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfluidic network, Anal. Chem. 76, 742-748 

  73. Hofmann, O., D. Che, K. A. Cruickshank and U. R. Muller (1999), Adaptation of capillary isoelectric focusing to microchannels on a glass chip, Anal. Chem. 71, 678-686 

  74. Grossman, P. D. and J. C. Colburn (1992), Capillary electrophoresis, p320, Academic Press Inc., California 

  75. Prest, J. E., S. J. Baldock, P. R. Fielden, N. J. Goddard and B. J. T. Brown (2003), Determination of inorganic selenium species by miniaturised isotachophoresis on a planar polymer chip, Anal. Bioanal. Chem. 376, 78-84 

  76. Wainright, A., S. J. Williams, G. Ciambrone, Q. Xue, J. Wei and D. Harris (2002), Sample pre-concentration by isotachophoresis in microfluidic devices, J. Chrom. A 979, 69-80 

  77. Kvasnicka, F., M. Jaros and B. Gas (2001), New configuration in capillary isotachophoresis-capillary zone electrophoresis coupling, J. Chrom. A 916, 131-142 

  78. Baldock, S.J., P.R. Fielden, N.J. Goddard, H.R. Kretschmer, J.E. Prest and B.J. Treves Brown (2004), Novel variable volume injector for performing sample introduction in a miniaturised isotachophoresis device, J. Chrom. A 1042, 188-188 

  79. Grasz, B., A. Neyer, M. Johnck, D. Siepe, F. Eisenbeisz, G. Weber and R. Hergenroder (2001), A new PMMA-microchip device for isotachophoresis with integrated conductivity detector, Sens. & Act. B 72, 249-258 

  80. Masar, M., M. Zuborova, J. Bielcikova, D. Kaniansky, M. Johnck and B. StanisIawski (2001), Conductivity detection and quantitation of isotachophoretic analytes on a planar chip with on-line coupled separation channels, J. Chrom. A 916, 101-111 

  81. Jeong, Y., K. Choi, M. K. Kang, K. Chun and D. S. Chung (2005), Transient isotachophoresis of highly saline samples using a microchip, Sens. & Act. B 104, 269-275 

  82. Masar, M., M. Dankova, E. Olvecka, A. Stachurova, D. Kaniansky and B. Stanislawski (2004), Determination of free sulfite in wine by zone electrophoresis with isotachophoresis sample pretreatment on a column-coupling chip, J. Chrom. A 1026, 31-39 

  83. Prest, J. E., S. J. Baldock, P. R. Fielden, N. J. Goddard and B. J. Treves Brown (2004), Analysis of amino acids by miniaturised isotachophoresis, J. Chrom. A 1051, 221-226 

  84. Xu, Z.Q., T. Hirokawa, T. Nishine and A. Arai (2003), High-sensitivity capillary gel electrophoretic analysis of DNA fragments on an electrophoresis microchip using electrokinetic injection with transient isotachophoretic preconcentration, J. Chrom. A 990, 53-61 

  85. Prest, J. E., S. J. Baldock, P. R. Fielden, N. J. Goddard, K. Kalimeri, B. J. Treves Brown and M. Zgraggen (2004), Use of miniaturised isotachophoresis on a planar polymer chip to analyse transition metal ions in solutions from metal processing plants, J. Chrom. A 1047, 289-298 

  86. Prest J. E., S. J. Baldock, P. R. Fielden, N. J. Goddard and B. J. Treves Brown (2003), Miniaturised isotachophoretic analysis of inorganic arsenic speciation using a planar polymer chip with integrated conductivity detection, J. Chrom. A 990, 325-334 

  87. Masar, M., D. Kaniansky, R. Bodor, M. Johnck and B. Stanislawski (2001), Determination of organic acids and inorganic anions in wine by isotachophoresis on a planar chip, J. Chrom. A 916, 167-174 

  88. Pethig, R. (1979), Dielectric and electronic properties of biological materials, p186, John Wiley & Sons, Surrey 

  89. Cummings, E. B. and A. K. Singh (2003), Dielectrophoresis in microchips containing arrays of insulating posts: Theoretical and experimental results, Anal. Chem. 75, 4724-4731 

  90. Fiedler, S., S. G. Shirley, T. Schnelle and G. Fultr (1998), Dielectrophoretic sorting of particles and cells in a microsystem, Anal. Chem. 70, 1909-1915 

  91. Durr, M., J. Kentsch, T. Muller, T. Schnelle and M. Stelzle (2003), Microdevices for manipulation and accumulation of micro-and nanoparticles by dielectrophoresis, Electrophoresis 24, 722-731 

  92. Li, H. and R. Bashir (2002), Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes, Sens. & Act. B 86, 215-221 

  93. Choi, J.-W., C. H. Ahn, S. Bhansali and H. T. Henderson (2000), A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems, Sens. & Act. B 68, 34-39 

  94. Choi, J.-W., T. M. Liakopoulos and C. H. Ahn (2001), An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy, Biosens. & Bioelec. 16, 409-416 

  95. Grand, K. M., J. W. Hemmert and H. S. White (2002), Magnetic field-controlled microfluidic transport, J. Am. Chem. Soc. 124, 462-467 

  96. Minc, N., C. Futterer, K. D. Dorfman, A. Bancaud, C. Gosse, C. Goubault and J.-L. Viovy (2004), Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes, Anal. Chem. 76, 3770-3776 

  97. Oakey, John, J. Allely and D. W. M. Marr (2002), Laminarflow-based separations at the microscale, Biotechnol. Prog. 18, 1439-1442 

  98. Huang, L. R., E. C. Cox, R. H. Austin and J. C. Stum (2004), Continuous particle separation through deterministic lateral displacement, Science 304, 987-990 

  99. Takayama, S., E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber and G. M. Whitesides (2003), Selective chemical treatment of cellular microdomains using multiple laminar streams, Chem. & Biol. 10, 123-130 

  100. Jandik, P., B.H. Weigl, N. Kessler, J. Cheng, C.J. Morris, T. Schulte, and N. Avdalovic (2002), Initial study of using a laminar fluid diffusion interface for sample preparation in high-performance liquid chromatography, J. Chrom. A 954, 33-40 

  101. Lion, N., J. -O. Gellon, H. Jensen and H. H. Girault (2003), On-chip protein sample desalting and preparation for direct coupling with electrospray ionization mass spectrometry, J. Chrom. A 1003, 11-19 

  102. Yamada, M., V. Kasim, M. Nakashima, J. Edahiro and M. Seki (2004), Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices, Biotechnol. & Bioeng. 88, 489-494 

  103. Nam, K.-H., H. Hong, H.-M. Park, S. M. Lim, W.-J. Chang, D.-I. Kim and Y.-M. Koo (2005), Continuous flow fractionation of CHO-K1 cells in microfluidic device using aqueous two-phase extraction technique, In Biochemical Engineering from Genomics to Human Well-Being, M. B. Gu and J. Lee Eds.; Proc. Asia Pacific Biochemical Engineering Conference 2005, Jeju, pp253 

  104. Park, S., P. M. Wolanin, E. A. Yuzbashyan, P. Silberzan, J. B. Stock, and R. H. Austin (2003), Motion to form a quorum, Science 301, 188 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로