$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Azotobacter vinelandii에서의 생물학적 질소고정 작용 메카니즘
Mechanism of Biological Nitrogen Fixation in Azotobacter vinelandii 원문보기

한국응용생명화학회지 = Journal of the Korean Society for Applied Biological Chemistry, v.48 no.3, 2005년, pp.189 - 200  

김용웅 (중앙대학교 생명공학과, 금속효소 연구그룹, 생명환경 연구원) ,  한재홍 (중앙대학교 생명공학과, 금속효소 연구그룹, 생명환경 연구원)

초록
AI-Helper 아이콘AI-Helper

생물학적 질소고정과정의 연구는 학문적으로나 산업적으로 매우 중요한 과정이다. 본 총설에서는 공업적 질소고정과 비교되는 생물학적 질소고정의 특징을 간단히 살펴보고, Azotobacter vinelandii에서 연구되고 있는 생물학적 질소고정효소의 특징을 다룬다. 생물학적 질소고정과정은 다양한 생명체에서 일어나며, 최근에는 미생물인 A. vinelandii에 그 작용 메커니즘에 관한 연구가 집중되어 있다. 공기중의 질소를 암모니아로 변환시키는 질소고정은 화학적으로 환원 반응에 해당하므로 전자의 공급이 필요하다. 생물학적 질소고정을 담당하는 질소고정효소는 촉매반응을 위해 생물학적인 환원력을 사용하여 전자를 공급받아, Fe 단백질의 $Fe_4S_4$ cluster와 MoFe 단백질의 P-cluster를 거쳐 질소 환원 반응이 일어나는 FeMo-cofactor로 전달한다. 이러한 전자전달의 과정과 수소이온의 전달 과정은 질소고정효소의 반응 메커니즘 이해에 매우 중요한 과정이며, FeMo-cofactor와 질소분자의 상호작용은 생물학적 질소고정 메커니즘의 중심에 있다. 질소고정 작용 메커니즘의 연구에는 X-선 단백질 결정학, EPR과 $M{\ddot{u}}ssbauer$ 등의 다양한 분광학적 방법과, 효소의 기질과 저해제의 상호작용을 연구하고 mutant와 비교하는 생화학적 접근방법, 그리고 FeMo-cofactor의 모델 화합물을 합성하여 연구하는 화학적 방법 등이 적용되었다. 이들 분야의 최근 연구결과를 소개하며, 마지막으로, 다양한 연구 결과에 바탕하여 새로운 질소고정효소의 작용 기작이 제안하였다.

Abstract AI-Helper 아이콘AI-Helper

Biological nitrogen fixation is an important process for academic and industrial aspects. This review will briefly compare industrial and biological nitrogen fixation and cover the characteristics of biological nitrogen fixation studied in Azotobacter vinelandii. Various organisms can carry out biol...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 중요한 과정이다. 본 총설에서는 공업적 질소고정과 비교되는 생물학적 질소고정의 특징을 간단히 살펴보고, Azotobacter Vedii에서 연구되고 있는 생물학적 질소고정효소의 특징을 다룬다. 생물학적 질소고정과정은 다양한 생명체에서 일어나며, 최근에는 미생물인 A.
  • 질소고정효소에 대해서는 생화학, 화학, 유전학 등의 다양한 분야에서 많은 총설이 현재까지 보고되어있다. 총설에서는 질소고정효소의 생화학적 특성과 그 메카니즘을 중심으로 최근의 동향을 다룰 것이다.
  • 그러므로, 질소고정효소 내의 금속 클러스터를 연구하기 위해서 EPR, 57Fe Mossbauer spectroscopy, Mo와 Fe X- ray absorption spectroscopy, 95Mo, 33S, 57Fe, 'H-ENDOR, MCD, IR 등의 다양한 분광학적 방법이 사용되었다. 이런 분광학적 방법은 FeMo-ccctor의 Mo과 Fe 원자 주변의 환경과 전자구조에 대한 자료를 제공하였다. Dithionite 존재 하에서 분리된 질소고정효소는 “as-isolated” 형태로 지칭하고, MoFe 단백질은 특징적인 전자 스핀 S = 3/2의 EPR 신호를 보인다.

가설 설정

  • 1. Isation of MoFe protein and Fe protein by ion exchange (Q-sepharose) column chromatography, (a) The proteins are black due to the metallo-cofactor which nitrogenase contains. The MoFe protein is eluted first, as shown in the picutre, and then Fe protein is eluted at higher concentation of NaCl.
  • 10(b)는 질소 고정작용에서의 FeMo-cofiictor와n 의 상호작용과 환원을 제안한 것이다. 이 제안에서는 FeMo-cofactor 내부의 미지의 원소를 질소로 가정하였다. 질소고정효소를 환원상태에서 분리하면, resting state로 존재하며(구조 1), a96-Arge (R)-homocitrate 에, al95-Hise FeMo-cofactor의 μ-S에 각각 수소 결합을 하고 있다.
본문요약 정보가 도움이 되었나요?

참고문헌 (116)

  1. Smil, V. (2000) In Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production (1st ed.) MIT Press, Cambridge, MA 

  2. Jennings, J. R. (1991) In Catalytic Ammonia Synthesis, Plenum press, New York 

  3. Etrl, G. (1980) Surface science and catalysis-studies on the mechanism of ammonia synthesis. Catal. Rev.-Sci. Eng. 21, 201 

  4. Boudart, M. (1980) Kinetics and mechanism of ammonia synthesis. Catal. Rev. 23, 1 

  5. Rees, D. C. and Howard J. B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol. 4, 559-566 

  6. Pedrosa, F. O., Hungria, M., Yates, G. and Newton, W. E. (1999) Nitrogen Fixation: From molecules to Crop Productivity. In Current Plant Science and Biotechnology in Agriculture, vol. 38, Kluwer Academic Publ. London 

  7. Sellman, D., Utz, J., Blum, N. and Heinemann, F. W. (1999) On the function of nitrogenase FeMo cofactors and competitive catalysts: chemical priniciples, structural blue-prints, and the relevance of iron sulfur complexes for $N_{2}$ fixation. Coord. Chem. Rev. 190-192, 607-627 

  8. Smith, B. E. (1999) Structure, function, and biosynthesis of the metallosulfur clusters in nitrogenases. Adv. Inorg. Chem. 47, 159 

  9. Sharp, R. E. and Chapman, S. K. (1999) Mechanisms for regulating electron transfer in multi-centre redox proteins. Biochim. Biophys. Acta. 1432, 143-158 

  10. Dance, I. (1998) Understanding structure and reactivity of new fundamental inorganic molecules: metal sulfides, metallocarbohedrenes, and nitrogenase. Chem. Comm. 523-530 

  11. Tuczek, F. and Lehnert, N. (1998) New developments in nitrogen fixation. Angew. Chem. Int. Ed. 37, 2636-2638 

  12. Kisker, C., Schindelin, H. and Rees, D. C. (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Ann. Rev. Biochem. 66, 233-267 

  13. Thorneley, R. N. F. and Lowe, D. J. (1996) Nitrogenase: substrate binding and activation. J. Biol. Inorg. Chem. 1, 576- 580 

  14. Dance, I. (1996) Theoretical investigations of the mechanism of biological nitrogen fixation at the FeMo cluster site. J. Biol. Inorg. Chem. 1, 581-586 

  15. Coucouvanis, D. (1996) Functional analogs for the reduction of certain nitrogenase substrates. Are multiple sites within the Fe/ Mo/S active center involved in the 6e- reduction of $N_{2}$ ? J. Biol. Inorg. Chem. 1, 594-600 

  16. Pickett, C. J. (1996) The Chatt cycle and the mechanism of enzymic reduction of molecular nitrogen. J. Biol. Inorg. Chem. 1, 601-606 

  17. Howard, J. B. and Rees, D. C. (1996) Structural basis of biological nitrogen fixation. Chem. Rev. 96, 2965-2982 

  18. Richards, R. L. (1996) Reactions of small molecules at transition metal sites: studies relevant to nitrogenase, an organometallic enzyme. Coord. Chem. Rev. 154, 83-97 

  19. Bazhenova, T. A. and Shilov, A. E. (1995) Nitrogen fixation in solution. Coord. Chem. Rev. 144, 69-145 

  20. Eady, R. R. and Leigh, G. J. (1994) Metals in the nitrogenases. J. Chem. Soc., Dalton Trans, 2739-2747 

  21. Ludden, P. W. (1994) In Nitrogenases & the Iron-Molybdenum Cofactor. King, R. B. Ed. Encyclopedia of Inorganic Chemistry, John Wiley & Sons, vol. 5. pp. 2566-2580 

  22. Rees, D. C., Chan, M. K. and Kim, J. (1993) Structure and function of nitrogenase. Adv. Inorg. Chem. 40, 89 

  23. Stiefel, E. I., Coucouvanis, D. and Newton, W. E. Ed. (1993). ACS Symposium Series, v. 535. Molybdenum Enzymes, Cofoactors, and Model Systems. D. C 

  24. Stacy, G., Burris, R. H. and Evans, H. J. (1992) Biological Nitrogen Fixation, Chapman & Hall 

  25. Burris, R. H. (1991) Nitrogenases. J. Biol. Chem. 266, 9339- 9342 

  26. Coucouvanis, D. (1991) Use of preassembled iron/sulfur and iron/molybdenum/sulfur clusters in the stepwise synthesis of potential analogs for the Fe/Mo/S site in nitrogenase. Acc. Chem. Res. 24, 1-8 

  27. Burgmayer, S. J. N. and Stiefel, E. I. (1985) Molybdenum enzymes, cofactors, and systems: the chemical uniqueness of molybdenum. J. Chem. Ed. 62, 943 

  28. Spiro, T. G. (1985) In Molybdenum Enzymes. John Wiley & Sons, New York 

  29. Henderson, R. A., Leigh, G. J. and Pickett, C. J. (1983) The chemistry of nitrogen fixation and models for the reactions of nitrogenase. Adv. Inorg. Chem. Radiochem. 27, 197 

  30. Muller, A. and Newton, W. E. (1983) In Nitrogen fixation. Plenum press, New York 

  31. Eady, R. R. (1991) The Mo-, V-, Fe-based nitrogenase systems of Azotobacter, Adv. Inorg. Chem. 36, 77-102 

  32. Luque, F. and Pau, R. N. (1991) Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. Mol. Gen. Genet. 227, 481 

  33. Rehder, D. (2000) Vanadium nitrogenase. J. Inorg. Biochem. 80, 133-136 

  34. Ruttimann-Johnson, C., Staples, C. R., Rangaraj, P., Shah, V. K. and Ludden, P. W. (1999) A vanadium and iron cluster accumulates on VnfX during Iron-Vanadium-cofacter synthesis for the vanadium nitrogenase in Azotobacter vinelandii. J. Biol. Chem. 274, 18087-18092 

  35. Eady, R. R. (1996) Structure-function relationships of alternative nitrogenases. Chem. Rev. 96, 3013-3030 

  36. Bishop, P. E., Jarlenski, D. M. L. and Hetherington, D. R. (1980) Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. USA 77, 7342- 7346 

  37. Chisnell, J. R., Remakumar, R. and Bishop, P. E. (1988) Purification of a second alternative nitrogenase from nifHDK deletion strain of Azotobacter vinelandii. J. Bacteriol. 170, 27- 33 

  38. Schneider, K., Gollan, U., Drottboom, M., Selsemeier-Voigt, S. and Muller, A. (1997) Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodoacter Capsulatus. Eur. J. Biochem. 244, 789-800 

  39. Rees, D. C. and Howard J. B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol. 4, 559-566 

  40. The activity of nitrogenase is generally represented by how much electrons are transferred to substrates because all electrons transferred to MoFe protein are used for substrate reduction 

  41. Ribbe, M., Gadkari, D. and Meyer, O. (1997) $N_{2}$ fixation by Streptomyces thermoautotrophicus involves a molybdenumdinitrogenase and a manganese-superoxide oxidoreductase that couple $N_{2}$ redcution to the oxidation of superoxide produced from $O_{2}$ by a molybdenum-CO dehydrogenase. J. Biol. Chem. 272, 26627-26632 

  42. Erickson, J. A., Nyborg, A. C., Johnson, J. L., Truscott, S. M., Gunn, A., Nordmeyer, F. R. and Watt, G. D. (1999) Enhanced Efficiency of ATP Hydrolysis during Nitrogenase Catalysis Utilizing Reductants That Form the All-Ferrous Redox State of the Fe Protein. Biochemistry 38, 14279-14285 

  43. Rees, D. C. and Howard, J. B. (1999) Structural bioenergetics and energy transduction mechanisms. J. Mol. Biol. 293, 343- 350 

  44. Clarke, T. A., Maritano, S. and Eady, R. R. (2000) Formation of a tight 1 : 1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for longrange interactions between the Fe protein binding sites during catalytic hydrogen evolution. Biochemistry 39, 11434-11440 

  45. ATP hydrolysis is not required for the electron transfer from Fe protein to MoFe protein, rather ATP accelerates electron transfer 

  46. Chan, J. M., Wu, W., Dean, D. R. and Seefeldt, L. C. (2000) Construction and characterization of a heterodimeric iron protein: defining roles for adenosine triphosphate in nitrogenase catalysis. Biochemistry 39, 7221-7228 

  47. Chan, J. M., Ryle, M. J. and Seefeldt, L. C.(1999) Evidnece that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex. J. Biol. Chem. 274, 17593-17598 

  48. Burgess, B. K. and Lowe, D. J. (1996) Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983-3012 

  49. Seefeldt, L. C. and Dean, D. R. (1997) Role of nucleotides in nitrogenase catalysis. Acc. Chem. Res. 30, 260-266 

  50. Howard, J. B. and Rees, D. C. (1994) Nitrogenase-a nucleotide-dependent molecular switch. Annu. Rev. Biochem. 63, 235-264 

  51. Kim, J. and Rees, D. C. (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature 360, 553-560 

  52. RCSB Protein Data Bank; http://www.rcsb.org/pdb/ 

  53. The abbreviations for MoFe protein (dinitrogenase) and Fe protein (dinitrogenase reductase) are 1 and 2, respectively. For example, MoFe protein of A. vinelandii is presented as Av1 

  54. Einsle, O., Tezcan, F. A., Andrade, S. L. A., Schmid, B., Yoshida, M., Howard, J. B. and Rees, D. C. (2002) Nitrogeanse MoFe-protein at $1.16{\AA}$ resolution: a central ligand in the FeMo-cofactor. Science 297, 1696-1700 

  55. Yoo, S. J., Angove, H. C., Burgess, B. K., Hendrich, M. P. and Munck, E. (1999) Mossbauer and interger-spin EPR studies and spin-coupling analysis of the $[4Fe-4S]^0$ cluster of the Fe protein from Azotobacter vinelandii nitrogenase. J. Am. Chem. Soc. 121, 2534-2545. 

  56. Watt, G. D. and Reddy, K. R. N. (1994) Formation of an all ferrous $Fe_{4}S_{4}$ cluster in the iron protein component of Azotobacter vinelandii nitrogenase. J. Inorg. Biochem. 53, 281- 294 

  57. Angove, H. C., Yoo, S. J., Munck, E. and Burgess, B. K. (1998) An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein. J. Biol. Chem. 273, 26330-26337 

  58. Angove, H. C., Yoo, S. J., Burgess, B. K. and Munck, E. (1997) Mussbauer and EPR evidence for an all-ferrous $Fe_{4}S_{4}$ cluster with S 4 in the Fe protein of nitrogenase. J. Am. Chem. Soc. 119, 8730-8731 

  59. Nyborg, A. C., Erickson, J. A., Johnson, J. L., Gunn, A., Truscott, S. M. and Watt, G. D. (2000) Reactions of Azotobacter vinelandii nitrogenase using Ti(III) as reductant. J. Inorg. Biochem. 78, 371-381 

  60. Hausinger, R. P. and Howard, J. B. (1983) Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii. J. Biol. Chem. 258, 13486-13492 

  61. Ribbe, M. W., Bursey, E. H. and Burgess, B. K. (2000) Identification of an Fe protein residue (Glu146) of Azotobacter vinelandii nitrogenase that is specifically involved in FeMo cofactor insertion. J. Biol. Chem. 275, 17631-17638 

  62. Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. and Rees, D. C. (1997) Structure of $ADP{\cdot}AIF_{4}^-$ -stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370-376 

  63. Grossmann, J. G., Hasnain, S. S., Yousafzai, F. K., Smith, B. E., Eady, R. R., Schindelin, H., Kisker, C., Howard, J. B., Tsuruta, H., Muller, J. and Rees, D. C. (1999) Comparing crystallographic and solution structures of nitrogenase complexes. Acta Cryst. D55, 727-728 

  64. Strop, P., Takahara, P. M., Chiu, H.-J., Angove, H. C., Burgess, B. K. and Rees, D. C. (2001) Crystal structure of the allferrous $[4Fe-4S]^0$ form of the Nitrogenase Iron protein from Azotobacter vinelandii. Biochemistry 40, 651-656. 

  65. McLean, P. A., Papaefthymiou, V., Orme-Johnson, W. H. and Munck, E. (1975) Isotopic hydrids of nitrogenase. Mossbauer study of MoFe protein with selective $^{57}Fe$ enrichment of the Pcluster. J. Biol. Chem. 262, 12900-12903 

  66. Peters, J. W., Stowell, M. H. B., Soltis, S. M., Finnegan, M. G., Johnson, M. K. and Rees, D. C. (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36, 1181-1187 

  67. The amino acid sequence of nitrogenase follows A. vinelandii 

  68. Dos Santos, P. C., Dean, D. R., Hu, Y. and Ribbe, M. W. (2004) Formation and insertion of the nitrogenase ironmolybdenum cofactor. Chem. Rev. 104, 1159-1173 

  69. Rawlings, J., Shah, V. K., Chisnell, J. R., Brill, W. J., Zimmerman, R., Munck, E. and Orme-Johnson, W. H. (1978) Novel metal cluster in the iron-molybdenum cofactor of nitrogenase. Spectroscopic evidence. J. Biol. Chem. 253, 1001- 1004 

  70. Li, J.-Ge., Burgess, B. K. and Corbin, J. L. (1982) Nitrogenase reactivity: Cyanide as substrate and inhibitor. Biochemistry 21, 4393-4402 

  71. Ryle, M. J., Lee, H.-I., Seefeldt, L. C. and Hoffman, B. M. (2000) Nitrogenase reduction of carbon disulfide: freeze-quench EPR and ENDOR evidence for three sequential intermediates with cluster-bound carbon moieties. Biochemitry 39, 1114-1119 

  72. Benton, P. M. C., Christiansen, J., Dean, D. R. and Seefeldt, L. C. (2001) Stereospecificity of acetylene reduction catalyzed by nitrogenase. Am. Chem. Soc. 123, 1822-1827 

  73. Nyborg, A. C., Johnson, J. L., Gunn, A. and Watt, G. D. (2000) Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis. J. Biol. Chem. 275, 39307- 39312 

  74. Hadfield, K. L. and Bulen, W. A. (1969) Adenosine triphosphate requirement of nitrogenase from Azotobacter vinelandii. Biochemistry 8, 5103-5108 

  75. Rivera-Ortiz, J. M. and Burris, R. H. (1975) Interactions among substrate and inhibitors of nitrogenase. J. Bacteriol. 123, 537- 545 

  76. Simpson, F. B. and Burris, R. H. (1984) A nitroegen pressure of 50 atmosphreres does not prevent evolution of hydrogen by nitrogenase. Science 224, 1095-1097 

  77. Hardy, R. W. F., Burns, R. C., Stansny, J. T. and Parashall, G. W. (1975) In Nitrogen Fixation by Free-living Microorganisms, Stewart, W. D. P. ed. IBP. 6. pp. 351-376 

  78. Fisher, K., Lowe, D. J. and Thorneley, R. N. F. (1991) Klebsiella pneumoniae nitrogenase. The pre-steady-state kinetics of MoFe-protein reduction and hydrogen evolution under conditions of limiting electron flux show that the rates of association with the Fe-protein and electron transfer are independent of the oxidation level of the MoFe-protein. Biochem. J. 279, 81-85 

  79. The terminology of 'apo-MoFe protein' was used historically to designate FeMo-cofactor void MoFe protein, which formed from nifE, nifN, nifB or nifH mutant. Strictly speaking, these proteins contain P-cluster and 'apo' is misnomer. Besides, apo- MoFe proteins isolated from nifE, nifN, or nif B mutant were reported different from that of nifH mutant 

  80. Shah, V. K. and Brill, W. J. (1977) Isolation of an ironmolybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. USA 74, 3249-3253 

  81. Christiansen, J., Goodwin, P. J., Lanzilotta, W. N., Seefeldt, L. C. and Dean, D. R. (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37, 12611- 12623 

  82. Liang, J., Madden, M., Shah, V. K. and Burris, R. H. (1990) Citrate substitutes for homocitrate in nitrogenase of a nifV mutant of Klebsiella pneumoniae. Biochemistry 29, 8577-8581 

  83. Mayer, S. M., Gormal, C. A., Smith, B. E. and Lawson, D. M. (2002) Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of Iron Molybdenum cofactor (FeMoco). J. Biol. Chem. 277, 35263- 35266 

  84. McLean, P. A. and Dixon, R. A. (1981) Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae. Nature 292, 655-657 

  85. Hawkes, T. R., McLean, P. A. and Smith, B. E. (1984) Nitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor. Biochem. J. 217, 317-321 

  86. Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E. and Dean, D. R. (1990) Role for the nitrogenase MoFe protein $\alpha$ - subunit in FeMo-cofactor binding and catalysis. Nature 343, 188-190 

  87. Mayer, S. M., Niehaus, W. G. and Dean, D. R. (2002) Reduction of short chain alkynes by a nitrogenase ${\alpha}$ - $70^{Ala}$ - substituted MoFe protein. J. Chem. Soc., Dalton Trans. 802- 807 

  88. Christiansen, J., Cash, V. L., Seefeldt, L. D. and Dean, D. R. (2000) Isolation and characterization of an acetylene-resistant nitrogenase. J. Biol. Chem. 275, 11459-11464 

  89. Christiansen, J., Seefeldt, L. D. and Dean, D. R. (2000) Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase. J. Biol. Chem. 275, 36104-36107 

  90. Davis, L. C. and Wang, Y.-L. (1980) In vivo and in vitro kinetics of nitrogenase J. Bacteriol. 141, 1230-1238 

  91. Maskos, Z. and Hales, B. J. (2003) Photo-lability of CO bound to Mo-nitrogenase from Aztobacter vinelandii. J. Inorg. Biochem. 93, 11-17 

  92. McLean, P. A., True, A., Nelson, M. J., Lee, H.-I., Hoffman, B. M. and Orme-Johnson, W. H. (2003) Effects of substrates (methyl isocyanide, $C_{2}H_{2}$ ) and inhibitor (CO) on resting-state wild-type and NifV-Klebsiella pneumoniae MoFe proteins. J. Inorg. Biochem. 93, 18-32 

  93. Han, J. and Newton, W. E. (2004) Differentiation of acetylenereduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed $C_{2}D_{2}$ reduction. Biochemistry 43, 2947-2956 

  94. Durrant, M. C. (2004) An atomic level model for the interactions of molybdenum nitrogenase with carbon monoxide, acetylene, and ethylene. Biochemistry 43, 6030-6042 

  95. Dance, I. (2004) The mechanism of nitrogenase. Computed details of the site and geometry of binding of alkyne and alkene substrates and intermediates. J. Am. Chem. Soc. 126, 11852-11863 

  96. Thorneley, R. N. F. and Lowe, D. J. (1985) In Molybdenum Enzymes; Spiro, T. G., Ed.; Wiley-Interscience: New York, p 221 

  97. Smith, B. E., Durrant, M. C., Fairhurst, S. A., Gormal, C. A., Gronberg, K. L. C., Henderson, R. A., Ibrahim, S. K., Le Gall, T. and Pickett, C. J. (1999) Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coord. Chem. Rev. 185-186, 669-687 

  98. Dos Santos, P. C., Igarashi, R. Y., Lee, H.-I., Hoffman, B. M., Seefeldt, L. C. and Dean, D. R. (2005) Substrate interactions with the nitrogenase active site. Acc. Chem. Res. 38, 208-214 

  99. Lee, H.-I., Igarashi, R. Y., Laryukhin, M., Doan, P. E., Dos Santos, P. C., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2004) An organometallic intermediate during alkyne reduction by nitrogenase. J. Am. Chem. Soc. 126, 9563-9569 

  100. Sellman, D., Fursattel, A. and Sutter, J. (2000) The nitrogenase catalyzed $N_2$ dependent HD formation: a model reaction and its significance for the FeMoco function. Coord. Chem. Rev. 200, 545-561 

  101. Durrant, M. C. (2001) Controlled protonation of ironmolybdenum cofactor by nitrogenases: a structural and theoretical analysis. Biochem. J. 355, 569-576 

  102. Han, J. and Coucouvanis, D. (2005) Synthesis and structure of the Organometallic $MFe_{2}$ $({\mu}_{3}-S)_2$ clusters (M Mo or Fe) Dalton Trans. 1234-1240 

  103. Nava, P., Han, J., Ahlrichs, R. and Coucouvanis, D. (2004) An evaluation by density functional theory of M-M interactions in organometallic clusters with the $[Fe_3MoS_3]^{2+}$ cores. Inorg. Chem. 43, 3225-3229. 

  104. Coucouvanis, D., Han, J., Ahlrichs, R., Nava, P. and Huniar, U. (2003) Density functional theory calculations on the nitrogenase cofactor and synthetic analogs. J. Inorg. Biochem. 96, 19-19 

  105. Coucouvanis, D., Han, J. and Moon, N. (2002) Synthesis and characterization of sulfur-voided cubanes. Structural analogs for the $MoFe_{3}S_{3}$ subunit in the nitrogenase cofactor. J. Am. Chem. Soc. 124, 216-224 

  106. Han, J., Beck, K., Ockwig, N. and Coucouvanis, D. (1999) Synthetic analogs for the $MoFe_{3}S_{3}$ subunit of the nitrogenase cofactor: Structural features associated with the total number of valence electrons and the possible role of M-M and multiple M-S bonding in the function of Nitrogenase. J. Am. Chem. Soc. 121, 10448-10449 

  107. Rao, P. V. and Holm, R. H. (2004) Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 104, 527-559 

  108. Lee, S. C. and Holm, R. H. (2004) The clusters of nitrogenase: Synthetic methodology in the construction of weak-field clusters. Chem. Rev. 104, 1135-1157 

  109. Zhang, Y. and Holm, R. H. (2004) Structural conversions of molybdenum-iron-sulfur edge-bridged double cubanes and PN- type clusters topologically related to the nitrogenase Pcluster. Inorg. Chem. 43, 674-682 

  110. Lee, S. C. and Holm, R. H. (2003) Speculative synthetic chemistry and the nitrogenase problem. Proc. Nat'l. Acad. Sci. USA 100, 3595-3600 

  111. Although 1Mo4+, 1Fe3+, 6Fe3+ model was suggested by ENDOR spectroscopic study, Yoo, et al's result is recently more supported. 

  112. Yoo, S. J., Angove, H. C., Papaethymiou, V., Burgess, B. K. and Munck, E. (2000) Mossbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective Fe- 57 enrichment of the M-centers. J. Am. Chem. Soc. 122, 4926-4936 

  113. Hinnemann, B. and Norskov, J. K. (2003) Modeling a central ligand in the nitrogenase FeMo cofactor. J. Am. Chem. Soc. 125, 1466-1467 

  114. Lee, H.-I., Benton, P. M. C., Laryukhin, M., Igarashi, R. Y., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2003) The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM show it is not an exchangeable nitrogen. J. Am. Chem. Soc. 125, 5604-5605 

  115. The distances are very short, considering hydrogen atoms are bonded to the amino acid residues 

  116. It is reported recently that the atom inside FeMo-cofactor may not be nitrogen atom. Yang, T.-C., Maeser, N. K., Laryukhin, M., Lee, H.-I., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2005) The interstitial atom of the nitrogenase FeMocofactor: ENDOR and ESEEM evidence that it is not a nitrogen. J. Am. Chem. Soc. ASAP ja0552489 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로