$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Genetic Parameters and Responses in Growth and Body Composition Traits of Pigs Measured under Group Housing and Ad libitum Feeding from Lines Selected for Growth Rate on a Fixed Ration 원문보기

Asian-Australasian journal of animal sciences, v.18 no.8, 2005년, pp.1075 - 1079  

Nguyen, Nguyen Hong (School of Veterinary Science, University of Queensland) ,  McPhee, C.P. (Animal Research Institute, Queensland Department of Primary Industries and Fisheries)

Abstract AI-Helper 아이콘AI-Helper

The main objective of this study is to examine genetic changes in growth rate and carcass composition traits in group housed, ad libitum fed pigs, from lines of Large White divergently selected over four years for high and low post-weaning daily gain on a fixed but restricted ration. Genetic paramet...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The current study examines genetic changes in growth and carcass traits in lines of Large White pigs selected divergently (high and low) for post-weaning growth in individual pens and fed on a restricted scale (80% of ad libitum) (Nguyen, 2002). Testing ofthe lines occurred under commercial production conditions of group housing and ad libitum feeding. Genetic correlations between and genetic responses in growth and carcass traits under these conditions are presented.

이론/모형

  • Breeding values (EBVs) for all the traits were estimated using the Best Linear Unbiased Prediction (BLUP) analysis of the PEST package (Groeneveld, 1990). The additive genetic and residual (co) variances used in the multi-trait model included the same fixed and random effects as described in estimation of genetic parameters.
  • A preliminary general linear model (GLM) analysis was carried out to determine the significance of fixed effects. Genetic and environmental variance components for all traits were estimated with the animal model restricted maximum likelihood method using the average information algorithm (ASREML, Gilmour et al., 1999). A series of univariate analyses was carried out to obtain estimates of heritability.
  • A series of univariate analyses was carried out to obtain estimates of heritability. Genetic and phenotypic correlations among the traits were derived from multivariate model analyses, using bivariate analysis starting values. The fixed effects of batch (33 classes) and sex (males and females), and the random effect of the individual animal were included in the equation for statistical analytic models.
  • Genetic and phenotypic correlations among the traits were derived from multivariate model analyses, using bivariate analysis starting values. The fixed effects of batch (33 classes) and sex (males and females), and the random effect of the individual animal were included in the equation for statistical analytic models. Litter effect was found to be insignificant for carcass traits but significant for LDG.
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. Black, J. L., L. R. Giles, P. C. Wynn, A. G. Knowles, C. A. Kerr, M. R. Jones, A. D. Strom, N. L. Gallagher and G. J. Eamens. 2001. Factors limiting the performance of growing pigs in commercial environments. In: Manipulating Pig Production VIII (Ed. P. D. Cranwell). Australasian Pig Science Association, Werribee, Australia, pp. 9-36. 

  2. Clutter, A. C. and E. W. Brascamp. 1998. Genetics of performance traits. In: The genetics of the Pig (Ed. M. F. Rothschild and A. Ruvinsky). CAB International, Wallingford; UK, pp. 427-462. 

  3. Falconer, D. S. 1954. Validity of the theory of genetic correlation. J. Hered. 45:42-44. 

  4. GenStat. 2002. Release 6.1 for windows. Sixth edition. VSN International Ltd., Oxford, UK. 

  5. Gilmour, A. R., B. R. Cullis, S. J. Welham and R. Thompson. 1999. Asreml reference manual. NSW Agriculture Biometric Bulletin No.3. Orange Agricultural Institute, Forest Road, Orange 2800 NSW Australia. 

  6. Groeneveld, E. 1990. Pest user's manual. Institute of Animal Husbandry and Animal Behaviour. Federal Agricultural Research Centre, Germany. 

  7. Hall, A. D., W. G. Hill, P. R. Bampton and A. J. Webb. 1999. Genetic and phenotypic parameter estimates for feeding pattern and performance test traits in pigs. Anim. Sci. 68:43-48. 

  8. Hofer, A., C. Hagger and N. Kunzi. 1992. Genetic evaluation of on-farm tested pigs using an animal model. I. Estimation of variance components with restricted maximum likelihood. Livest. Prod. Sci. 30:69-82. 

  9. Johansson, K., B. W. Kennedy and M. Quinton. 1993. Prediction of breeding values and dominance effects from mixed models with approximations of the dominance relationship matrix. Livest. Prod. Sci. 33:213-223. 

  10. Kennedy, B. W. 1990. Use of mixed model methodology in analysis of designed experiments. pp. 77-97 in Advances in statistical methods for genetic improvement of Livestock. Springer Verlag, Berlin, Germany. 

  11. Kim, J. I., Y. G. Sohn, J. H. Jung and Y. I. Park. 2004. Genetic parameter estimates for backfat thickness at three different sites and growth rate in swine. Asian-Aust. J. Anim. Sci. 17:305-308. 

  12. Labroue, F., R. Gueblez and P. Sellier. 1997. Genetic parameters of feeding behavior and performance traits in group-housed large white and French landrace growing pigs. Genet. Sel. Evol. 29:451-468. 

  13. McPhee, C. P. and M. MacBeth. 2000. A profit model for estimating economic values of traits in the national pig improvement program, PDRC DAG58/1339 final report. 

  14. McPhee, C. P., G. A. Rathmell, L. J. Daniels and N. D. Cameron. 1988. Selection in pigs for increased lean growth rate on a time-based feeding scale. Anim. Prod. 47:149-156. 

  15. Nguyen, N. H. and C. P. McPhee. 2005. Genetic parameters and responses in performance and body composition traits in pigs selected for high and low growth rate on a fixed ration over a set time. Genet. Sel. Evol. 37:199-213. 

  16. Nguyen, N. H. 2002. Direct and correlated responses to selection for growth rate in Large White pigs on restricted feeding. Ph.D. Thesis, University of Queensland, Australia. 

  17. Roehe, R. and B. W. Kennedy. 1993. The influence of maternal effects on accuracy of evaluation of litter size in swine. J. Anim. Sci. 71:2353-2364. 

  18. Sellier, P. 1998. Genetics of meat and carcass traits. In The genetics of the pig (Ed. M. F. Rothschild and A. Ruvinsky). CAB International, Wallingford; UK, pp. 463-510. 

  19. Skorupski, M. T., D. J. Garrick and H. T. Blair. 1996. Estimates of genetic parameters for production and reproduction traits in three breeds of pigs. N. Z. J. Agri. Res. 39:387-395. 

  20. Von Felde, A., R. Roehe, H. Looft and E. Kalm. 1996. Genetic association between feed intake and feed intake behaviour at different stages of growth of group-housed boars. Livest. Prod. Sci. 47:11-22. 

  21. Werf, J. H. J. van D. and I. J. M. D. Boer. 1990. Estimation of additive genetic variance when base populations are selected. J. Anim. Sci. 68:3124-3132. 

  22. Wolter, B. F. 2001. Effect of group size on pig performance in a wean-to-finish production system. J. Anim. Sci. 79:1067-1073. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로