$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

This study was carried out to construct a single diameter and a single height model that could localize Chamaecyparis obtusa stand grown in 3 Southern regions of Korea. Dummy variables, which convert qualitative information such as geographical regions into quantitative information by means of a coding scheme (0 or 1), were used to localize growth models. In results, modified form of Gompertz equation, $Y_2={\exp}({\ln}(Y_1){\exp}(-{\beta}(T_2-T_1)+{\gamma}({T_2}^2-{T_1}^2))+({\alpha}+{\alpha}_1Al+{\beta}_1k_1+{\beta}_2k_2)(1-{\exp}(-{\beta}(T_2-T_1)+{\gamma}({T_2}^2-{T_1}^2))$, for diameter and height was successfully disaggregated to provide different projection equation for each of the 3 regions individually. The use of dummy variables on a single equation, therefore, provides potential capabilities for testing the justification of having different models for different sub-populations, where a number of site variables such as altitude, annual rainfall and soil type can be considered as possible variables to explain growth variation across regions.

저자의 다른 논문

참고문헌 (24)

  1. Belcher, E.M., Holdaway, M.R. and Brand, G.J. 1982. A description of STEMS: the stand tree evaluation and modelling system. USDA, Forest Service General Technical Report. NC-79:18 
  2. Gertner, G.Z. 1984. Localizing a diameter increment model with a sequential Bayesian procedure. Forest Science. 30(4): 851-864 
  3. Law, K.R.N. 1990. A growth model for Douglas fir grown in the South Island of New Zealand. FRI/Industry Research Cooperatives: Stand Growth Modelling Cooperative Report No. 18. Forest Research Institute, Rotorua 
  4. Pienaar, L.Y. and Turnbull, K.J. 1973. The Chapman-Richards generalization of von Bertalanffy's model for basal area growth and yield in even-aged stands. Forest Science. 19: 2-22 
  5. Ralston, M.L. and Jenrich, R.I. 1979. Dud: A derivative- free algorithm for nonlinear least-squares. Technometrics. 20(1): 7-14 
  6. SAS Institute Inc. 1990. SAS/Stat User's guide. Version 6, Cary, NC 
  7. Schumacher, F.X. 1939. A new growth curve and its Application to timber-yield studies. Journal of Forestry. 37: 819-820 
  8. Whyte, A.G.D. and Woollons, R.C. 1992. Diameter distribution growth and yield modeling: recent revisions and perspectives. School of forest, University of Canterbury, New Zealand. Unpublished 
  9. Woollons, R.C. and Wood, G.R. 1992. Improving yield forecasting reliability through aggregated modeling. In: Wood, G.B. and Turner (Eds), B.J. Proceedings IUFRO-Integrating Information Over space and Time. Australian National University Canberra, January; 13-17. 1992: 71-80 
  10. Yang, R.L., Kozak, a. and Smith, H.J.G 1978. The potential of Weibull-type functions as flexible growth functions. Canadian Journal of Forest Research. 8: 424-431 
  11. Stage, A.R. 1973. Prognosis model for stand development. USDA Forest Service Research Paper. INT-137: 32 
  12. Cocham, W.G. 1977. Sampling techniques. John and Wiley and Sons, New York. 428 
  13. Green, E.J., Strawdermarm, W.E. and Thomas, C.E. 1992. Empirical Bayes development of Honduran pine yield models. Forest Science 38(1): 21-33 
  14. Smith, W.B. 1983. Adjusting STEMS regional forest growth model to improve local predictions. USDA, Forest Service Research. Note. NC-197 
  15. Burkhart, H.E. and Tennent, R.B. 1977. Site index equation for radiata pine in New Zealand. New Zealand Journal of Forest Science 7(3): 408-416 
  16. Ferguson, I.S. and Leech, J.W. 1978. Generalized least-squares estimation of yield functions. Forest Science. 24: 27-42 
  17. SAS Institute Inc. 1990. SAS/STAT Procedures guide. Version 6, NC 
  18. Berkey, C.S. 1982. Bayesian approach for non-linear growth model. Biometrics 38: 953-961 
  19. Gujarat, D. 1970. Use of dummy variables in testing for equality between sets of coefficients in liner regression: a generalization. American statistician 25(4): 21-33 
  20. Liu, Xu. 1990. Growth and yield of Douglas fir plantations in the Central North Island of New Zealand. Ph.D Thesis. School of Forestry, University of Canterbury, New Zealand. 244 
  21. Goulding, C.J. 1979. Validation of growth models for Pinus radiata in New Zealand. New Zealand Journal of Forest. 24(1): 108-124 
  22. Whyte, A.G.D., Temu, M.J. and Woollons, R.C. 1992. Improving yield forecasting reliability through aggregated modeling. In: Wood, G.B. and Turner (Eds), B.J. proceedings IUFRO-Integrating Information Over space and Time. Australian National University Canberra, January; 13-17, 1992: 81-88 
  23. Goulding, C.J. and Shirey, J.W 1979. A method to predict the yield of log assortments for long term planning. In Elliott, D.A(Ed). Mensuration of management planning of exotic forest plantations. New Zealand Forest Service FRI Symposium No. 20: 301-314 
  24. Whyte, A.G.D. and Woollons, R.C. 1990. Modelling stand growth of radiata pine Thinned to varying densities. Canadian Journal of Forest Research. 20: 1069-1076 

이 논문을 인용한 문헌 (1)

  1. Lee, Sang-Hyun 2009. "Estimation of Diameter and Height Growth Equations Using Environmental Variables" 韓國林學會誌 = Journal of Korean Forest Society, 98(3): 351~356 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일