$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Abstract Oligotrophic microbial fuel cells (MFCs) were tested for the continuous monitoring of low biochemical oxygen demand (BOD) by using artificial wastewater, containing glucose and glutamate, as check solution. Ten times diluted trace mineral solution was used to minimize the background current level, which is generated from the oxidation of nitrilotriacetate used as a chelating agent. The feeding rate of 0.53 ml/min could increase the sensitivity from 0.16 to 0.43 ${\mu}$A/(mg BOD/l) at 0.15 ml/min. The dynamic linear range of the calibration curve was between 2.0 and 10.0 mg BOD/l, and the response time to the change of 2 mg BOD/l was about 60 min. The current signal from an oligotroph-type MFCs increased with the increase in salts concentration, and the salt effect could be eliminated by 50 mM phosphate buffer.

참고문헌 (21)

  1. Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327- 334 
  2. Kim, B. H., J. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25: 541-545 
  3. Kim, H. J., H. S. Park, M. S. Hyun, J. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145-152 
  4. Liu, J. and B. Mattiasson. 2002. Microbial BOD sensors for wastewater analysis. Wat. Res. 36: 3786- 3802 
  5. Gunatilaka, A. and J. Dreher. 2003. Use of real-time data in environmental monitoring: Current practice. Wat. Sci. Tech. 47: 53-61 
  6. Moon, H., I. S. Chang, K. H. Kang, J. K. Jang, and B. H. Kim. 2004. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol. Lett. 26: 1717- 1721 
  7. Buerk, D. G. 1993. Biosensors: Theory and Applications, pp. 1-18. Technomic, Lancaster, U.K 
  8. Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Improvement of cathode reaction of a mediator-less microbial fuel cell with graphite or platinum-coated graphite as the cathode. J. Microbiol. Biotechnol. 14: 324- 329 
  9. Chee, G. J., Y. Nomura, K. Ikebukuro, and I. Karube. 2000. Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosens. Bioelectron. 15: 371-376 
  10. Kim, M., S. M. Youn, S. H. Shin, J. G. Jang, S. H. Han, M. S. Hyun, G. M. Gadd, and H. J. Kim. 2003. Practical field application of a novel BOD monitoring system. J. Environ. Monit. 5: 640- 643 
  11. Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, J. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel cell type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681 
  12. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, and B. H. Kim. 1999. A fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365- 367 
  13. Karube, I., T. Matsunga, S. Mitsuda, and S. Suzuki. 1977. Microbial electrode BOD sensors. Biotechnol. Bioeng, 19: 1535-1547 
  14. Diekert, G. 1991. The acetogenic bacteria, pp. 517-533. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes. 2nd Ed. Springer-Verlag, New York, U.S.A 
  15. Yang, Z., H. Suzuki, S. Sasaki, and I. Karube. 1996. Disposable sensor for biochemical oxygen demand. Appl. Microbiol. Biotechnol. 46: 10- 14 
  16. Chee, G. J., Y. Nomura, and I. Karube. 1999. Biosensor for the estimation of low biochemical oxygen demand. Anal. Chem. Acta 379: 185-191 
  17. Bourgeois, W., J. E. Burgess, and R. M. Stuetz. 2001. Online monitoring of wastewater quality: A review. J. Chem. Technol. Biotechnol. 76: 337- 348 
  18. Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 25: 1357-1361 
  19. Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand using a microbial fuel cell type biosensor Biosens. Bioelectron. 19: 607- 613 
  20. Enfors, S. O. and N. Molin. 1973. Biodegradation of nitrilotriacetate (NTA) by bacteria-I. Isolation of bacteria able to grow anaerobically with NTA as a sole carbon source. Wat. Res. 7: 881-888 
  21. Vanrolleghem, P. A. and D. S. Lee. 2003. On-line monitoring equipment for wastewater treatment processes: State of art. Wat. Sci. Tech. 47: 1- 34 

이 논문을 인용한 문헌 (4)

  1. 2006. "" Journal of microbiology and biotechnology, 16(2): 163~177 
  2. 2007. "" Journal of microbiology and biotechnology, 17(1): 110~115 
  3. Yoon, Seok-Min ; Choi, Chang-Ho ; Kwon, Kil-Koang ; Jeong, Bong-Geun ; Hong, Seok-Won ; Choi, Yong-Su ; Kim, Hyung-Joo 2007. "Development of a Biosensor Using Electrochemically-Active Bacteria [EAB] for Measurements of BOD [Biochemical Oxygen Demand]" 한국생물공학회지 = Korean journal of biotechnology and bioengineering, 22(6): 438~442 
  4. 2009. "" Biotechnology and bioprocess engineering, 14(6): 687~693 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일