$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In this research, we examined the effect of NaCl on the growth, energy metabolism, and proton motive force of Halomonas salina, and the effect of compatible solutes on the bacterium growing in the high salinity environment. H. salina was isolated from seawater and identified by 16srDNA sequencing. The growth of H. salina was not enhanced by the addition of external compatible solutes (choline and betaine) in the high salinity environment. The resting cells of H. salina absorbed more glucose in the presence of 2.0 M NaCl than in its absence. H. salina did not grow in the medium with either KCl, RbCl, CsCl, $Na_2SO_4$, or $NaNO_3$, in place of NaCl. The optimal concentration of NaCl for the growth of H. salina ranged from 1.4 M to 2.5 M, and the growth yield was decreased in the presence of NaCl below 1.4M and above 2.5M. The activity of isocitrate dehydrogenase, pyruvate dehydrogenase, and malate dehydrogenase of H. salina was not inhibited by NaCl in in vitro test. The proton translocation of H. salina was detected in the presence of NaCl only. These results indicate that NaCl is absolutely required for the normal growth and energy metabolism of H. salina, but the bacterial growth is not enhanced by the compatible solutes added to the growth medium.

저자의 다른 논문

참고문헌 (27)

  1. Choquet, C. G., I. Ahoshai, M. Klein, and D. J. Kushner. 1991. Formation and role of glycine betaine in the moderate halophile Vibrio costicola: Site for action of $Cl^-$ ions. J. Bacteriol. 171: 880- 886 
  2. Galinski, E. A. 1995. Osmoadaptation in bacteria. Adv. Microb. Physiol, 19: 273- 328 
  3. Ken-Dror, S., J. K. Lanyi, B. Schobert, B. Silver, and Y. Avi-Dor. 1986. An NADH:quinone oxidoreductase of the halotolerant bacterium Bal is specifically dependent on sodium ions. Arch. Biochem. Biophys. 244: 766- 772 
  4. Onishi, H., T. Kobayashi, N. Morita, and M. Baba. 1984. Effect of salt concentration on the cadmium tolerance of a moderately halophilic cadmium tolerant Pseudomonas sp. Agric. Biol. Chem. 48: 2441- 2448 
  5. Ono, H., K. Sawadas, N. Khunajakr, T. Tao, M. Yamamoto, M. Hiramoto, A. Shinrnyo, M. Takano, and Y. Murooka. 1999. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J. Bacteriol. 181: 91- 99 
  6. Vreeland, R. H. and E. L. Martia. 1980. Growth characteristics, effects of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata. Can. J. Microbiol. 26: 746- 752 
  7. Mljica, F. J., E. Cisneros, C. Ferrer, F. R. Valera, and G. Juez. 1997. Osmotically induced response in representatives of halophilic prokaryotes: The bacterium Halomonas elongata and the archaeon Haloferax volcanii. J. Bacteriol. 179: 5471- 5481 
  8. Ciulla, R. A, M. R. Diza, B. F. Taylor, and M. F. Roberts. 1997. Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment. Appl. Environ. Micrbiol. 63: 220- 226 
  9. Del Mora, A., J. Severin, A. Ramos-Cormenzana, H. G. Truper, and E. A. Galinski. 1994. Compatible solutes in new moderately halophilic isolates. FEMS Microbiol. Lett. 122: 165- 172 
  10. Kraegeloh, A. and H. J. Kunte. 2002. Novel insights into the role of potassium for osmoregulation in Halomonas elongata. Extremophiles 6: 453- 462 
  11. Canovas, D., C. Vargas, L. N. Csonka, A. Ventosa, and J. J. Nieto. 1998. Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl. Environ. Microbiol. 64: 4095-4097 
  12. Cummings, S. P. and D. J. Gilmour. 1995. The effect of NaCI on the growth of Halomonas species: Accumulation and utilization of compatible solutes. Microbiology 141: 1413-1418 
  13. Gadd, G. M., E. P. Burford, and M. Fomina. 2003. Biogeochemical activities of microorganisms in mineral transformations: Consequences for metal and nutrient mobility. J. Microbiol, Biotechnol. 13: 323- 332 
  14. Grarnrnann, K., A. Volke, and H. J. Kunte. 2002. New type of osmoregulated solute transporter identified in Halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM2581. J. Bacteriol. 184: 3078- 3085 
  15. Lee, Y. J., K. H. Cho, and Y. J. Kim. 2003. The membranebound NADH: Ubiquinone oxidoreductase in the aerobic respiratory chain of marine bacterium Pseudomonas nautical. J. Microbiol. Biotechnol. 13: 255- 259 
  16. Frings, E., T. Sauer, and E. A. Glinski. 1995. Production of hydroxyectoin: High cell-density cultivation and osmotic downshock of Marinococcus strain M52. J. Biotechnol. 43: 53- 61 
  17. Canovas, D., C. Vargas, L. N. Csonka, A. Ventosa, and J. J. Nieto. 1996. Osmoprotectants in elongata: High-affinity betaine transport system and choline-betaine pathway. J. Bacteriol. 12: 7221-7226 
  18. Ken-Dror, S., R. Preger, and Y. Avi-Dor. 1986. Functional characterization of the uncoupler-insensitive Na+ pump of the halotolerant bacterium, Bal. Arch. Biochem. Biophys. 244: 122- 127 
  19. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403- 2410 
  20. Fitz, R. M. and H. Cypionka. 1989. A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans. Arch. Microbiol. 152: 369- 375 
  21. Orea, A. 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in a solar saltern by the use of bile salts. FEMS Microbiol. 73: 41- 48 
  22. Werthamer, S., A. Prieber, and L. Amaral. 1973. Quantitation of lactate dehydrogenase isoenzyme patterns of the developing human fetus. Clin. Chim. Acta 45: 5-11 
  23. Quesada, E., V. Bejar, M. J. Valderrama, and A. RamosCormenzana. 1987. Growth characteristics and salt requirement of Deleya halophila in a defined medium. Curr. Microbiol. 16:21-25 
  24. Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292- 1297 
  25. Adams, R., J. Bygraves, M. Kogul, and N. J. Russell. 1987. The role of osmotic effects in haloadaptation of Vibrio costicola. J. Gen. Microbiol. 133: 1861- 1870 
  26. Kim, Y.-M., I.-K. Rhee, and T. Tsuchiya. 2004. Cloning of a novel $Na^{+}-dependent$ L-serine specific symporter gene from Haemophilus influenzae Rd and characteristics of the transporter. J. Microbiol. Biotechnol. 14: 520- 524 
  27. Kamekura, M. and H. Omishi. 1982. Cell-associated cations of the moderate halophile Micrococcus varians ssp. Halophilus grown in media of thigh concentration of LiCl, NaCl, KCl, RbCl or CsCl. Can. J. Microbiol. 28: 155-161 

이 논문을 인용한 문헌 (2)

  1. 2006. "" Journal of microbiology and biotechnology, 16(4): 639~642 
  2. 2008. "" Journal of microbiology and biotechnology, 18(3): 545~551 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일