$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Doxorubicin Productivity Improvement by the Recombinant Streptomyces peucetius with High-Copy Regulatory Genes Cultured in the Optimized Media Composition

Abstract

Doxorubicin is a clinically important anticancer polyketide compound that is typically produced by Streptomyces peucetius var. caesius. To improve doxorubicin productivity by S. peucetius, a doxorubicin pathway-specific regulatory gene, dnrI, was cloned into a high-copy-number plasmid containing a catechol promoter system. The S. peucetius containing the recombinant plasmid exhibited approximately 9.5-fold higher doxorubicin productivity compared with the wild-type S. peucetius. The doxorubicin productivity by this recombinant S. peucetius strain was further improved through the optimization of culture media composition. Based on the Fractional Factorial Design (FFD), cornstarch, $K_2HPO_4$, and $MgSO_4$ were identified to be the key factors influencing doxorubicin productivity. The Response Surface Method (RSM) results based on 20 independent culture conditions with varying amounts of key factors predicted the highest theoretical doxorubicin productivity of 11.1 mg/l with corn starch of 46.33 g/l, $K_2HPO_4$ of 4.63 g/l, and $MgSO_4$ of 9.26 g/l. The doxorubicin productivity of the recombinant S. peucetius strain with the RSM-based optimized culture condition was experimentally verified to be 11.46 mg/l, which was approximately 30.8-fold higher productivity compared with the wild-type S. peucetius without culture media optimization.

참고문헌 (26)

  1. Berdy, J. 1984. New ways to obtain antibiotics. Chin. J. Antibiot. 7: 272- 290 
  2. Hopwood, D. A., K. F. Chater, J. E. Dowding, and A Vvian. 1973. Advances in Streptomyces coelicolor genetics. Bacteriol. Rev. 37: 371-405 
  3. Hopwood, D. A., T. Kieser, M. J. Bibb, M. J. Buttner, and K. F. Chater. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, U.K. 
  4. Hwang, Y. S., J. Y. Lee, E. S. Kim, and C. Y. Choi. 2001. Optimization of transformation procedure in avermectin high-producing Streptomyces avermitilis. Biotechnol. Lett. 23: 457-462 
  5. Myers, R. H. and D. C. Montgomery. 1995. Response Surface Methodology: Process and Product Optimization using Designed Experiments, 1st Ed. Wiley-Interscience, U.S.A. 
  6. Nicholls, G., B. J. Chark, and J. E. Brown. 1992. Solid-phase extraction and optimized separation of doxorubicin, epirubicin and their metabolites using reverse-phase high performance liquid chromatography. J. Pharm. Biomed. Anal. 10: 949-957 
  7. Otten, S. L., J. Ferguson, and C. R. Hutchinson. 1995. Regulation of daunorubicin production in Streptomyces peucetius by the $dnrR_2$ locus. J. Bacteriol. 177: 1216-1224 
  8. Peggy, A. R., P. A. Mcann, M. A. Pentella, and B. M. Pogell. 1979. Simultaneous loss of multiple differentiated functions in aerial mycelium-negative isolates of Streptomyces. J. Bacteriol. 137: 891- 899 
  9. Hamseveni, D. R., S. G. Prapulla, and S. Divakar. 2001. Response surface methodological approach for the synthesis of isobutyl isobutyrate. Proc. Biochem. 36: 1103-1109 
  10. Vetrivel, K. S. and K. Dharmalingam. 2001. Isolation and characterization of stable mutants of Streptomyces peucetius defective in daunorubicin biosynthesis. J. Genet. 80: 31-38 
  11. Park, H. J. and E. S. Kim. 2003. An inducible Streptomyces gene cluster involved in aromatic compound metabolism. FEMS Microbiol. Lett. 226: 151- 157 
  12. Volff, J. N. and J. Altenbuchner. 1998. Genetic instability of the Streptomyces chromosome. Mol. Microbiol. 27: 239-246 
  13. Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1978. Statistics for Experimenters, pp. 291- 334. John Wiley and Sons, New York, U.S.A. 
  14. Demain, A. L. 2000. Small bugs, big business: The economic power of the microbe. Biotechnol. Adv. 18: 499- 514 
  15. Elibol, M. and F. Mavituna. 1998. Effect of sucrose on actinorhodin production by Streptomyces coelicolor A3(2). J. Biochem. 33: 307- 311 
  16. Chatterjee, S. and L. C. Vining. 1981. Nutrient utilization in actinomycetcs. Induction of $\alpha-glucosidases$ in Streptomyces venezualae. Can. J. Microbiol. 27: 639- 645 
  17. Cochran, W. G. and G. M. Cox. 1957. Experimental Design, 2nd Ed. pp. 346- 354. John Wiley and Sons, New York, U.S.A. 
  18. Kim, C.-Y., H.-J. Park, Y. J. Yoon, H.-Y. Kang, and E.-S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092 
  19. Stutzman-Engwall, K. J., S. L. Otten, and C. R. Hutchinson. 1992. Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J. Bacteriol. 174: 144- 154 
  20. Jung, W.-S., E.-S. Kim, H.-Y. Kang, C.-Y. Choi, D. H. Sherman, and Y. J. Yoon. 2003. Site-directed mutagenesis on putative macrolactone ring size determinant in the hybrid pikrornycin-tylosin polyketide synthase. J. Microbiol. Biotechnol. 13: 823- 827 
  21. Hounsa, C. G., J. M. Aubry, and H. C. Dubourguier. 1996. Application of factorial and Doehlert design for optimization of pectate lyase production by a recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 45: 764- 770 
  22. Kim, C.-Y., H.-J. Park, and E.-S. Kim. 2003. Heterologous expression of hybrid type II polyketide synthase system in Streptomyces species. J. Microbiol. Biotechnol. 13: 819-822 
  23. Kalakoutskii, L. V. and N. S. Agre. 1976. Comparative aspects of development and differentiation in actinomycetes. Bacteriol. Rev. 40: 469- 524 
  24. Rao, K. J., C. H. Kim, and S. K. Rhee. 2000. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Proc. Biochem. 35: 639- 647 
  25. Park, H. S., H. J. Park, Y. H. Kim, S. M. Lim, D. I. Kim, W. S. Ry, and E. S. Kim. 2003. Development of doxorubicin overproducing Streptomyces strain using protoplast regeneration. K. J. Biotech. Bioeng. 18: 289- 293 
  26. Dey, G., A. Mitra, R. Banerjee, and B. R. Maiti. 2001. Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochem. Eng. J. 7: 227- 233 

이 논문을 인용한 문헌 (10)

  1. 2006. "" Journal of microbiology and biotechnology, 16(11): 1690~1698 
  2. 2006. "" Journal of microbiology and biotechnology, 16(9): 1338~1346 
  3. 2006. "" Journal of microbiology and biotechnology, 16(9): 1472~1476 
  4. 2006. "" Journal of microbiology and biotechnology, 16(9): 1477~1480 
  5. 2007. "" Journal of microbiology and biotechnology, 17(12): 1996~2004 
  6. 2007. "" Journal of microbiology and biotechnology, 17(9): 1538~1545 
  7. 2007. "" Journal of microbiology and biotechnology, 17(2): 305~312 
  8. 2007. "" Journal of microbiology and biotechnology, 17(3): 534~538 
  9. 2009. "" Journal of microbiology and biotechnology, 19(2): 136~139 
  10. Kim, Chang-Young ; Noh, Jun-Hee ; Lee, Han-Na ; Kim, Eung-Soo 2009. "Functional Analysis of an Antibiotic Regulatory Gene, afsR2 in S. lividans through DNA microarray System" KSBB Journal, 24(3): 259~266 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일