$\require{mediawiki-texvc}$
  • ๊ฒ€์ƒ‰์–ด์— ์•„๋ž˜์˜ ์—ฐ์‚ฐ์ž๋ฅผ ์‚ฌ์šฉํ•˜์‹œ๋ฉด ๋” ์ •ํ™•ํ•œ ๊ฒ€์ƒ‰๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๊ฒ€์ƒ‰์—ฐ์‚ฐ์ž
๊ฒ€์ƒ‰์—ฐ์‚ฐ์ž ๊ธฐ๋Šฅ ๊ฒ€์ƒ‰์‹œ ์˜ˆ
() ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ์—ฐ์‚ฐ์ž ์˜ˆ1) (๋‚˜๋…ธ (๊ธฐ๊ณ„ | machine))
๊ณต๋ฐฑ ๋‘ ๊ฐœ์˜ ๊ฒ€์ƒ‰์–ด(์‹)์„ ๋ชจ๋‘ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฌธ์„œ ๊ฒ€์ƒ‰ ์˜ˆ1) (๋‚˜๋…ธ ๊ธฐ๊ณ„)
์˜ˆ2) ๋‚˜๋…ธ ์žฅ์˜์‹ค
| ๋‘ ๊ฐœ์˜ ๊ฒ€์ƒ‰์–ด(์‹) ์ค‘ ํ•˜๋‚˜ ์ด์ƒ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฌธ์„œ ๊ฒ€์ƒ‰ ์˜ˆ1) (์ค„๊ธฐ์„ธํฌ | ๋ฉด์—ญ)
์˜ˆ2) ์ค„๊ธฐ์„ธํฌ | ์žฅ์˜์‹ค
! NOT ์ดํ›„์— ์žˆ๋Š” ๊ฒ€์ƒ‰์–ด๊ฐ€ ํฌํ•จ๋œ ๋ฌธ์„œ๋Š” ์ œ์™ธ ์˜ˆ1) (ํ™ฉ๊ธˆ !๋ฐฑ๊ธˆ)
์˜ˆ2) !image
* ๊ฒ€์ƒ‰์–ด์˜ *๋ž€์— 0๊ฐœ ์ด์ƒ์˜ ์ž„์˜์˜ ๋ฌธ์ž๊ฐ€ ํฌํ•จ๋œ ๋ฌธ์„œ ๊ฒ€์ƒ‰ ์˜ˆ) semi*
"" ๋”ฐ์˜ดํ‘œ ๋‚ด์˜ ๊ตฌ๋ฌธ๊ณผ ์™„์ „ํžˆ ์ผ์น˜ํ•˜๋Š” ๋ฌธ์„œ๋งŒ ๊ฒ€์ƒ‰ ์˜ˆ) "Transform and Quantization"
์ณ‡๋ด‡ ์ด๋ชจํ‹ฐ์ฝ˜
์•ˆ๋…•ํ•˜์„ธ์š”!
ScienceON ์ฑ—๋ด‡์ž…๋‹ˆ๋‹ค.
๊ถ๊ธˆํ•œ ๊ฒƒ์€ ์ €์—๊ฒŒ ๋ฌผ์–ด๋ด์ฃผ์„ธ์š”.

๋…ผ๋ฌธ ์ƒ์„ธ์ •๋ณด

GENERALIZED (๐œƒ, ๐œ™)-DERIVATIONS ON POISSON BANACH ALGEBRAS AND JORDAN BANACH ALGEBRAS

Abstract

In [1], the concept of generalized (${\theta}$, ${\phi}$)-derivations on rings was introduced. In this paper, we introduce the concept of generalized (${\theta}$, ${\phi}$)-derivations on Poisson Banach algebras and of generalizd (${\theta}$, ${\phi}$)-derivations on Jordan Banach algebras, and prove the Cauchy-Rassias stability of generalized (${\theta}$, ${\phi}$)-derivations on Poisson Banach algebras and of generalized (${\theta}$, ${\phi}$)-derivations on Jordan Banach algebras.

์ €์ž์˜ ๋‹ค๋ฅธ ๋…ผ๋ฌธ

์ฐธ๊ณ ๋ฌธํ—Œ (0)

  1. ์ด ๋…ผ๋ฌธ์˜ ์ฐธ๊ณ ๋ฌธํ—Œ ์—†์Œ

์ด ๋…ผ๋ฌธ์„ ์ธ์šฉํ•œ ๋ฌธํ—Œ (0)

  1. ์ด ๋…ผ๋ฌธ์„ ์ธ์šฉํ•œ ๋ฌธํ—Œ ์—†์Œ

์›๋ฌธ๋ณด๊ธฐ

์›๋ฌธ PDF ๋‹ค์šด๋กœ๋“œ

  • ScienceON :

์›๋ฌธ URL ๋งํฌ

  • ์›๋ฌธ URL ๋งํฌ ์ •๋ณด๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.

์›๋ฌธ PDF ํŒŒ์ผ ๋ฐ ๋งํฌ์ •๋ณด๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š์„ ๊ฒฝ์šฐ KISTI DDS ์‹œ์Šคํ…œ์—์„œ ์ œ๊ณตํ•˜๋Š” ์›๋ฌธ๋ณต์‚ฌ์„œ๋น„์Šค๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. (์›๋ฌธ๋ณต์‚ฌ์„œ๋น„์Šค ์•ˆ๋‚ด ๋ฐ”๋กœ ๊ฐ€๊ธฐ)

์ƒ์„ธ์กฐํšŒ 0๊ฑด ์›๋ฌธ์กฐํšŒ 0๊ฑด

DOI ์ธ์šฉ ์Šคํƒ€์ผ