$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In this paper we consider the problem of testing statistical hypotheses for unknown parameters in nonlinear regression models and propose three asymptotically equivalent tests based on regression quantiles estimators, which are Wald test, Lagrange Multiplier test and Likelihood Ratio test. We also derive the asymptotic distributions of the three test statistics both under the null hypotheses and under a sequence of local alternatives and verify that the asymptotic relative efficiency of the proposed test statistics with classical test based on least squares depends on the error distributions of the regression models. We give some examples to illustrate that the test based on the regression quantiles estimators performs better than the test based on the least squares estimators of the least absolute deviation estimators when the disturbance has asymmetric and heavy-tailed distribution.

저자의 다른 논문

참고문헌 (9)

  1. A. R. Gallant, Nonlinear Regression Models , John Wiley and Sons, 1987 
  2. Huber, Robust Statistics , John Wiley and Sons, 1981 
  3. R. Koenker and G. Bassett, Regression Quantiles, Econometrica 46 (1978), 33- 50 
  4. R. Koenker, Robust Tests for Heterocedasticity based on Regression Quantiles, Econometrica 50 (1982), 43-61 
  5. J. Jureckova and B. Prochazka, Regression quantiles and trimmed least squares estimators in nonlinear regression model , Nonparametric Statistics 3 (1994), 201-222 
  6. E. L. Lehmann, Testing Statistical Hypotheses , John Wiley and Sons, 1986 
  7. Z. J. Liu, Nonparametric Estimates of the Nuisance Parameter in the LAD Tests, Communication in Statistics-A, 21 (1992), 861-881 
  8. G. A. F. Seber and C. J. Wild, Nonlinear Regression, John Wiley and Sons, 1989 
  9. J. Wang, Asymptotic normality of $L_{1}$-estimators in nonlinear regression, J. Mul- tivariate Anal. 54 (1995), 227-238 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일