$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacryl­amide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebis­acrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g­PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-poly­methacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the Alg-g-PMAM or the H-Alg-g-PMAM was characterized by FTIR spectroscopy. The effects of the grafting variables (i.e., concentration of MBA, MAM, and APS) and the alkaline hydrolysis conditions (i.e., NaOH concentration, hydrolysis time, and temperature) were optimized systematically to achieve a hydrogel having the maximum swelling capacity. Measurements of the absorbency in various aqueous salt solutions indicated that the swelling capacity decreased upon increasing the ionic strength of the swelling medium. This behavior could be attributed to a charge screening effect for monovalent cations, as well as ionic cross-linking for multivalent cations. Because of the high swelling capacity in salt solutions, however, the hydrogels might be considered as anti-salt superabsorbents. The swelling behavior of the superabsorbing hydrogels was also measured in solutions having values of pH ranging from 1 to 13. Furthermore, the pH reversibility and on/off switching behavior, measured at pH 2.0 and 8.0, suggested that the synthesized hydrogels were excellent candidates for the controlled delivery of bioactive agents. Finally, we performed preliminary investigations of the swelling kinetics of the synthesized hydrogels at various particle sizes.

참고문헌 (45)

  1. F. A. Dorkoosh, J. Brussee, J. C. Verhoef, G. Borchard, M. Rafeiee-Tehrani, and H. E. Juninger, Polymer, 41, 8213 (2000) 
  2. S. Silong and L. Rahman, J. Appl. Polym. Sci., 76, 516 (2000) 
  3. A. Martinesen, I. Storro, and G. Skjak-Braek, Biotech. Bioeng., 39, 186 (1992) 
  4. G. R. Mitchell and J. M. V. Blanshard, Texture Studies, 7, 219 (1976) 
  5. P. J. Flory, in Principles of Polymer Chemistry, Ithaca, Cornell University Press, New York, 1953 
  6. S. C. Hsu, T. M. Don, and W. Y. Chiu, Polym. Degrad. Stab. 75, 73 (2002) 
  7. A. Pourjavadi, M. Sadeghi, and H. Hosseinzadeh, Polym. Adv. Technol., 15, 1 (2004) 
  8. A. Pourjavadi, R. Mazidi, and H. Hosseinzadeh, J. Appl. Polym. Sci., Submitted (2004) 
  9. J. Chen and Y. Zhao, J. Appl. Polym. Sci., 75, 808 (2000) 
  10. A. Richter, A. Bund, M. Keller, and K. Arndt, Sens. Actuators B, 99, 579 (2004) 
  11. V. D. Athawale and V. Lele, Carbohydr. Polym., 35, 21 (1998) 
  12. S. Lu, M. Duan, and S. Lin, J. Appl. Polym. Sci., 8, 1536 (2003) 
  13. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 40, 1753 (1999) 
  14. D. W. Lim, K. J. Yoon, and S. W. Ko, J. Appl. Polym. Sci., 78, 2525 (2000) 
  15. J. Kost, in Encyclopedia of Controlled Drug Delivery, E. Mathiowitz, Ed., Wiley, New York, 1999, Vol. 1, p. 445 
  16. N. A. Peppas and A. G. Mikes, in Hydrogels in Medicine and Pharmacy, CRC Press, Boca Raton, Florida, 1986, Vol. 1 
  17. R. Lapasin and S. Pricl, in Rheology of Industrial Polysaccharides, Theory and Applications, Blackie, Glasgow, 1995, p. 31 
  18. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 39, 6697 (1998) 
  19. A. Pourjavadi, M. J. Zohuriaan-Mehr, S. N. Ghasempoori, and H. Hossienzadeh, Reac. Func. Polym., submitted (2004) 
  20. A. S. Hoffman, in Polymeric Materials Encyclopedia. J. C. Salamone, Ed., CRC Press, Boca Raton, Florida, 1996, Vol. 5, p. 3282 
  21. United States Department of Agriculture, US Patent 3, 981, 100 (1961) 
  22. R. Po, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 34, 607 (1994) 
  23. C. K. Nisha, D. Dhara, and P. R. Chatterji, J. M. S. Pure Appl. Chem., A37, 1447 (2000) 
  24. F. L. Buchholz and A. T. Graham, in Modern Superabsorbent Polymer Technology, Wiley, New York, 1997 
  25. A. M. Lowman and N. A. Peppas, in Encyclopedia of Controlled Drug Delivery, E. Mathiowitz, Ed., John Wiley & Sons, New York, 1999, p. 139 
  26. L. H. Gan, G. R. Deen, Y. T. Gan, and K. C. Tam, Eur. Polym. J., 37, 1473 (2001) 
  27. V. D. Athawale and V. Lele, Starch/Starke, 50, 426 (1998) 
  28. L. P. Krul, E. I. Narciko, Y. I. Matusevich, L. B. Yakimtsova, V. Matusevich, and W. Seeber, Polym. Bull., 45, 159 (2000) 
  29. G. Pass, G. O. Philips, and D. J. Wedlock, Macromolecules, 10, 197 (1997) 
  30. K. Burugapalli, D. Bhatia, V. Koul, and V. Choudhary, J. Appl. Polym. Sci., 82, 217 (2001) 
  31. W. F. Lee and W. Y. Yuan, J. Appl. Polym. Sci., 77, 1760 (2000) 
  32. Y. Sugahara and O. Takahisa, J. Appl. Polym. Sci., 82, 1437 (2001) 
  33. W. F. Lee and G. H. Lin, J. Appl. Polym. Sci., 79, 1665 (2001) 
  34. E. Sjostrom, in Wood Chemistry: Fundamental and Applications, Academic Press, 1981, Chap. 9 
  35. G. R. Mahdavinia, A. Pourjavadi, and M. J. Zohuriaan-Mehr, Polym. Adv. Technol., 15, 173 (2004) 
  36. M. Yazdani-Pedram, J. Retuert, and R. Quijada, Macromol. Chem. Phys., 201, 923 (2000) 
  37. M. Yalpani, in Polysaccharides Synthesis, Modifications and Structure/Property Relations, Elsevier, New York, 1998, p. 10 
  38. L. B. Peppas and R. S. Harland, in Absorbent Polymer Technology, Elsevier, Amsterdam, 1990 
  39. H. Hosseinzadeh, A. Pourjavadi, M. J. Zohouriaan-Mehr, and G. R. Mahdavinia, J. Bioact. Compat. Polym., submitted (2004) 
  40. F. L. Buchholz, in Superabsorbent Polymers: Science and Technology, F. L. Buchholz and N. A. Peppas, Eds., ACS Symposium Series 573, American Chemical Society, Washington, DC, 1994 
  41. K. M. Raju, M. P. Raju, and Y. M. Mohan, J. Appl. Polym. Sci., 85, 1795 (2000) 
  42. G. M. Patel and H. C. Trivedi, Eur. Polym. J., 35, 201 (1999) 
  43. J. A. Rowley, G. Madlambayan, and D. J. Mooney, Biomaterials, 20, 45 (1999) 
  44. H. Hosseinzadeh, A. Pourjavadi, and M. J. Zohouriaan-Mehr, J. Biomater. Sci. Polym. Eds., 15, 1499 (2004) 
  45. A. Pourjavadi, A. M. Harzandi, and H. Hossienzadeh, Eur. Polym. J., 40, 1363 (2004) 

이 논문을 인용한 문헌 (1)

  1. 2008. "" Macromolecular research, 16(1): 45~50 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일