$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

To achieve demineralization of crab shell waste by chemical and biological treatments, lactic acid and lactic acid bacterium were applied. In 5.0 and $10\%$ lactic acid, pH rapidly decreased from 6.8 to 4.2 and from 4.5 to 2.4 at day 3, respectively, and thereafter the pH remained at an almost constant level. In a $10\%$ lactic acid bacterium inoculum, pH lowered to 4.6 at day 5. Relative residual ash content rapidly decreased to 49.1 and $16.4\%$ in 5 and $10\%$ lactic acid treatments, respectively, for the initial 12 h. In 2.5, 5 and $10\%$ lactic acid bacterium inoculums, relative residual ash content rapidly decreased to 55.2, 40.9 and $44.7\%$, respectively, on the first day. Residual dry masses were 76.4, 67.8 and $46.6\%$ in 2.5, 5 and $10\%$ lactic acid treatments, respectively, for the initial 12 h. After a one-time exchange of the lactic acid solution, in the $5.0\%$ lactic acid treatment, residual dry mass rapidly decreased from 66.0 to $41.4\%$. In 2.5, 5 and $10\%$ lactic acid bacterium inoculums, residual dry masses decreased to 67.6, 57.4 and $59.6\%$ respectively, on the first day. Protein contents after demineralization ranged from $51.3{\sim}54.7\%$ in the chemical treatments and decreased to $32.3\%$ in the lactic acid fermentation process. A negative relationship was shown between pH and demineralization rate in lactic acid and lactic acid bacterium treatments. These results suggest that lactic acid fermentation can be an alternative for demineralization of crab shells, even though the rate and efficiency of the demineralization is lower than the chemical treatment.

참고문헌 (20)

  1. Whistler, R. S. and J. N. BeMiller (1962) Chitin. J. Org. Chem. 27: 1161-1163 
  2. Ng, C. H., S. Chandrkrachang, and W. F. Stevens (2000) Effect of the rate of deacetylation on the physico-chemical properties of cuttlefish chitin. Adv. Chitin Science 4: 50-54 
  3. Peniston, Q. P. and E. L. Johnson (1978) Demineralization of crustacea shells. US Patent 4,066,735 
  4. Horowitz, S. T., S. Roseman, and H. J. Blumenthal (1957) Preparation of glucosamine oligoshaccharides: 1. Separation. J. Am. Chem. Soc. 79: 5046-5049 
  5. Hall, G. M. and S. Silva (1991) Lactic acid fermentation of shrimp (Penaus monodon) waste for chitin recovery. pp. 633-638. In: C. J. Brine, P. A. Sandford, and J. P. Zikakis (eds.). Advance Chitin and Chitosan. 5th International Conference on Chitin & Chitosan. Elsevier, London, UK 
  6. A.O.A.C. (1980) Official Methods of Analysis of the Association of Official Analytical Chemists. Washington DC., USA 
  7. Takiguchi, Y, K. Ohkouchi, H. Yamashita, and K. Shimahara (1987) A new method for quantitative determination of protein associated with crustacean chitin. Nippon Nogei Kagaku Kaishi. 61: 437-441 
  8. Hackman, R. H. (1954) Chitin. 1. Enzyme degradation of chitin and chitin esters. Austr. J. Biol. Sci. 7: 168-178 
  9. Stevens, W. F. (2002) Production and storage of high quality chitosan from shrimp, crab and fungus. pp. 6-11. In: K. Scchiva, S. Chandrkrachang, P. Methacanon, and M. G. Peter (eds.). Advance in Chitin Science. Vol. V. Proceeding of the 5th Asia Pacific Chitin and Chitosan Symposium & Exhibition. Bangkok, Thailand 
  10. Shirai, K, I. Guerrero, S. Huerta, G Saucedo, A. Castillo, R. O. Gonzalez, and G. M. Hall (2001) Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzym. Microbial. Technol. 28: 446-452 
  11. Myint, K. T., C. H. Ng, S. Chandrkrachang, and W. F. Stevens (2002) Optimal demineralization of crab shells wastes for chitin production. pp. 15-18. In: K. Scchiva, S. Chandrkrachang, P. Methacanon, and M. G. Peter (eds.). Advance in Chitin Science. Vol. V. Proceeding of the 5th Asia Pacific Chitin and Chitosan Symposium & Exhibition. Bangkok, Thailand 
  12. Takeda, M. and E. Abe (1962) Isolation of crustacean chitin: Decalcification by disodium ethylenediaminotetraacetate and enzymic hydrosis of incidental proteins. Norisho Suisan Koshusho Kenkyu Hokoku 11: 339-406 
  13. Zakaria, Z., G. M. Hall, and G. Shama (1998) Lactic acid fermentation of scampi waste in a rotating horizontal bioreactor for chitin recovery. Process Biochem. 33: 1-6 
  14. Cira, L. A., S. Huerta, G. M. Hall, and K. Shirai (2002) Piot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem. 37: 1359-1366 
  15. Allan, G. G., J. R. Fox, and N. Kong (1978) Marine polymers. Part 8. A critical evaluation of the potential sources of chitin and chitosan. pp. 64-78. In: R. A. A. Muzzarelli and E. R. Pariser (eds.). Proceeding of 1st International Conference on Chitin/Chitosan. MIT Sea Grant Rep. MITSG, USA 
  16. Bautisa, J., O. Cremades, R. Corpas, R. Ramos, F. Iglesias, J. Vega et al. (2000) Preparation of chitin by acetic acid fermenation. pp. 28-33. In: M. G. Peter, A. Domard, and A. A. Muzzaralli (eds.). Advences in Chitin Science. Vol. 4. University of Potsdam, Potsdam, Germany 
  17. Lin, J. Q., S. M. Lee, and Y. M. Koo (2004) Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose. Biotechnol. Bioprocess Eng. 9: 52-58 
  18. Roberts, G. A. (1998) Chitosan production routes and their role in determining the structure and properties of the products. pp. 22-31. In: A, Domard, G. A. F. Roberts, and K. M. Varum (eds.). Advances in Chitin Science. Vol. II. Jacques Andres, Lyon, France 
  19. Takeda, M. and H. Katsuura (1964) Purification of king crab chitin. Suisan Daigaku Kenkyu Hokoku 13: 109-116 
  20. Lin, J. Q., S. M. Lee, and Y. M. Koo (2004) Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose. Biotechnol. Bioprocess Eng. 9: 52-58 

이 논문을 인용한 문헌 (2)

  1. 2008. "" Biotechnology and bioprocess engineering, 13(5): 566~570 
  2. 2009. "" Biotechnology and bioprocess engineering, 14(6): 819~827 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일