$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Functional Mode of NtHSP17.6, a Cytosolic Small Heat-Shock Protein from Nicotiana tabacum

Journal of plant biology = 식물학회지, v.48 no.1, 2005년, pp.120 - 127  

Yoon Hae-jeong (Institute of Molecular Biology and Genetics, Seoul National University) ,  Kim Keun Pill (Institute of Molecular Biology and Genetics, Seoul National University) ,  Park Soo Min (Institute of Molecular Biology and Genetics, Seoul National University) ,  Hong Choo Bong (Institute of Molecular Biology and Genetics, Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

Small heat-shock proteins (sHsps) are ubiquitous stress proteins with molecular chaperone activity. They share characteristic homology with the $\alpha-crystallin$ protein of the mammalian eye lens as well as being ATP. independent in their chaperone activity. We isolated a clone for a cy...

참고문헌 (52)

  1. Cell Stress Chaper R Abdulle 7 6 2002 10.1379/1466-1268(2002)007<0006:XSHSPH>2.0.CO;2 Abdulle R, Mohindra A, Fernando P, Heikkia JJ (2002)Xenopus small heat shock proteins, Hsp30C and Hsp 30D, maintain heat- and chemically denatured luciferase in a folding competent state. Cell Stress Chaper 7: 6-16 

  2. Cell Dev Biol VR Agashe 11 15 2000 10.1006/scdb.1999.0347 Agashe VR, Hartl F-U (2000) Roles of molecular chaper-ones in cytoplasmic protein folding. Cell Dev Biol 11: 15-25 

  3. FEBS Lett LO Anderson 20 199 1972 10.1016/0014-5793(72)80793-2 Anderson LO, Borg H, Mikaelsson M (1972) Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett 20: 199-202 

  4. J Biol Chem E Basha 279 7566 2004 10.1074/jbc.M310684200 Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E (2004a) The identity of proteins associated with a small heat shock protein during heat stressin vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279: 7566-7575 

  5. FEBS Lett E Basha 271 1426 2004 Basha E, Lee GJ, Demeler B, Vierling E (2004b) Chaperone activity of cytosolic small heat shock proteins from wheat. FEBS Lett 271: 1426-1436 

  6. J Mol Evol GJ Caspers 40 238 1995 10.1007/BF00163229 Caspers GJ, Leunissen JAM, de Jong WW (1995) The expanding small heat-shock protein family and structure predictions of the conserved “alpha-crystalline domain”. J Mol Evol 40: 238-248 

  7. J Plant Biol EK Cho 47 149 2004 10.1007/BF03030646 Cho EK, Hong CB (2004) Molecular cloning and expression pattern analyses of heat shock protein 70 genes fromNicotiana tabacum. J Plant Biol 47: 149-159 

  8. FEBS Lett KP Das 369 321 1995 10.1016/0014-5793(95)00775-5 Das KP, Surewicz WK (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chap-erone activity of a-crystalline. FEBS Lett 369: 321-325 

  9. Intl J Biol Macromol WW Jong de 22 151 1998 10.1016/S0141-8130(98)00013-0 de Jong WW, Caspers GJ, Leunissen JAM (1998) Genealogy of the a-crystallin/small heat-shock protein super-family. Intl J Biol Macromol 22: 151-162 

  10. Mol Biol Evol WW Jong de 10 103 1993 de Jong WW, Leunissen JAM, Voorter CEM (1993) Evolution of the α-crystalline/small heat shock protein family. Mol Biol Evol 10: 103-126 

  11. EMBO J M Ehrnsperger 16 221 1997 10.1093/emboj/16.2.221 Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16: 221-229 

  12. Anal Biochem M Ehrnsperger 259 218 1998 10.1006/abio.1998.2630 Ehrnsperger M, Hergersberg C, Wienhues U, Nichtl A, Buchner J (1998) Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. Anal Biochem 259: 218-225 

  13. J Biol Chem M Ehrnsperger 274 14867 1999 10.1074/jbc.274.21.14867 Ehrnsperger M, Lilie H, Gaestel M, Buchner J (1999) The dynamics of Hsp25 quaternary structure. J Biol Chem 274: 14867-14874 

  14. Curr Biol RJ Ellis 7 R531 1997 10.1016/S0960-9822(06)00273-9 Ellis RJ (1997) Molecular chaperones: Avoiding the crowd. Curr Biol 7: R531-R533 

  15. Physiol Rev AL Fink 79 425 1999 10.1152/physrev.1999.79.2.425 Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79: 425-449 

  16. Biochem Biophys Res Comm X Fu 316 291 2004 10.1016/j.bbrc.2004.02.053 Fu X, Chang Z (2004) Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein fromMycobacterium tuberculosis. Biochem Biophys Res Comm 316: 291-299 

  17. Cell Mol Life Sci M Haslbeck 59 1649 2000 10.1007/PL00012492 Haslbeck M (2000) sHsps and their role in the chaperone network. Cell Mol Life Sci 59: 1649-1657 

  18. EMBO J M Haslbeck 18 6744 1999 10.1093/emboj/18.23.6744 Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp 26: A temperature-regulated chaperone. EMBO J 18: 6744-6751 

  19. Cell AL Horwich 74 909 1997 10.1016/0092-8674(93)90470-B Horwich AL, Weissman JL (1997) Deadly conformations-protein misfolding in prion disease. Cell 74: 909-917 

  20. Proc Natl Acad Sci USA J Horwitz 89 10449 1992 10.1073/pnas.89.21.10449 Horwitz J (1992) Alpha-crystalline can function as a molecular chaperone. Proc Natl Acad Sci USA 89: 10449-10453 

  21. Phil Trans R Soc Lond B Biol Sci R Jaenicke 348 97 1995 10.1098/rstb.1995.0050 Jaenicke R (1995) Folding and association versus misfolding and aggregation of proteins. Phil Trans R Soc Lond B Biol Sci 348: 97-105 

  22. J Biol Chem U Jakob 277 38468 1993 Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 277: 38468-38475 

  23. Plant Cell Physiol TL Jinn 30 463 1989 10.1093/oxfordjournals.pcp.a077764 Jinn TL, Yeh YC, Lin CY (1989) Stabilization of soluble proteinsin vitro by heat shock protein-enriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol 30: 463-469 

  24. Mol Cells MK Joe 5 519 2000 Joe MK, Park SM, Lee YS, Hwang DS, Hong CB (2000) High temperature stress resistance ofEscherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol Cells 5: 519-524 

  25. Nature KK Kim 394 595 1998 10.1038/29106 Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat shock protein. Nature 394: 595-599 

  26. Plant Sci KR Kim 167 1017 2004 10.1016/j.plantsci.2004.05.043 Kim KR, Joe MK, Hong CB (2004) Tobacco small heat-shock protein, NtHSP18.2, has broad substrate range as a molecular chaperone. Plant Sci 167: 1017-1025 

  27. Plant Physiol GJ Lee 122 189 2000 10.1104/pp.122.1.189 Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122: 189-198 

  28. EMBO J GR Lee 16 659 1997 10.1093/emboj/16.3.659 Lee GR, Roseman HR, Vierling E (1997) A small heat shock protein stably binds heat denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16: 659-671 

  29. FEBS Lett EJ Levy 368 435 1995 10.1016/0014-5793(95)00704-D Levy EJ, McCarty J, Bukau B, Chirico WJ (1995) Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulators. FEBS Lett 368: 435-440 

  30. Mol Microbiol A Mogk 50 585 2003 10.1046/j.1365-2958.2003.03710.x Mogk A, Deuerling E, Vorderwillbecke S, Vierling E, Bernd B (2003) Small heat shock proteins, CIpB and the DnaK system, form a functional triad in reversing protein aggregation. Mol Microbiol 50: 585-595 

  31. EMBO J A Mogk 18 6934 1999 10.1093/emboj/18.24.6934 Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B (1999) Identification of thermo-labileEscherichia coli proteins: Prevention ind reversion of aggregation by DnaK and CIpB. EMBO J 18: 6934-6949 

  32. NMBR F Narberhaus 66 64 2002 Narberhaus F (2002) a-Crystalline-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. NMBR 66: 64-93 

  33. Nover L (1990) Heat Shock Response. CRC Press, 

  34. Boca Raton Park SM (2002) Structural and functional diversity of small heat shock proteins inNicotiana tabacum. Ph.D. thesis, Seoul National University, Seoul 

  35. J Plant Physiol SM Park 159 25 2002 10.1078/0176-1617-00660 Park SM, Hong CB (2002) Class I small heat-shcck protein gives thermotolerance in tobacco. J Plant Physiol 159: 25-30 

  36. Trends Biochem Sci SE Radford 25 611 2000 10.1016/S0968-0004(00)01707-2 Radford SE (2000) Protein folding: Progress made and promises ahead. Trends Biochem Sci 25: 611-618 

  37. Proc Natl Acad Sci USA N Plesofsky-Vig 92 537 1995 10.1073/pnas.92.11.5032 Plesofsky-Vig N, Brambl R (1995) Disruption o the gene for hsp30, an a-crystalline-related heat shock protein ofNeurospora crassa, causes defects in thermotolerance. Proc Natl Acad Sci USA 92: 537-545 

  38. J Sambrook 1989 Molecular Cloning; A Laboratory Manual Ed 2 Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning; A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, New York 

  39. Proc Natl Acad Sci USA K Sanger 74 5463 1977 10.1073/pnas.74.12.5463 Sanger K, Nicklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 74: 5463-5467 

  40. J Exp Bot KD Scharf 47 325 2001 Scharf KD, Siddique M, Vierling E (2001) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47: 325-338 

  41. J Biotech C Schlieker 96 13 2002 10.1016/S0168-1656(02)00033-0 Schlieker C, Bukau B, Mogk A (2002) Prevention and reversion of protein aggregation by molecular chaperones in theE. coli cytosol: Implications for their applicability in biotechnology. J Biotech 96: 13-21 

  42. J Biol Chem RJ Schumacher 269 9493 1994 10.1016/S0021-9258(17)36908-9 Schumacher RJ, Hurst R, Sullivan WP, McMahon NJ, Toft DO, Matts RL (1994) ATP dependent chaperoning activity of reticulocyte lysate. J Biol Chem 269: 9493-9499 

  43. J Biol Chem KK Sharma 273 8965 1998 10.1074/jbc.273.15.8965 Sharma KK, Kaur H, Kumar GS, Kester K (1998) Interaction of 1,1′-bis (4 anilino)naphthalene-5,5′-disulfonic acid with a-crystalline. J Biol Chem 273: 8965-8970 

  44. Eur J Biochem P Smykal 267 2195 2000 10.1046/j.1432-1327.2000.01223.x Smykal P, Hrdy I, Pechan PM (2000) High-molecular-mass complexes formedin vivo contain small Hsps and Hsp70 and display chaperone-like activity. Eur J Biochem 267: 2195-2207 

  45. J Biol Chem T Stromer 278 18015 2003 10.1074/jbc.M301640200 Stromer T, Ehrnsperger M, Gaestel M, Buchner J (2003) Analysis of the interactions of small heat shock proteins with unfolding proteins. J Biol Chem 278: 18015-18021 

  46. R Montfort van 105 2002 Protein Folding in the Cell van Montfort R, Slingsby C, Vierling E (2002) Structure and function of the small heat shock protein/α-crystallin family of molecular chaperones.,In AL Horwich, ed, Protein Folding in the Cell. Academic Press, New York, pp 105-156 

  47. J Biol Chem L Veinger 273 11032 1998 10.1074/jbc.273.18.11032 Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat shock protein IbpB fromEscherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multi-chaperone network. J Biol Chem 273: 11032-11037 

  48. Annu Rev Plant Physiol Plant Mol Bol E Vierling 42 579 1991 10.1146/annurev.pp.42.060191.003051 Vierling E (1991) The role of heat shock-proteins in plant. Annu Rev Plant Physiol Plant Mol Bol 42: 579-620 

  49. Eur J Biochem K Wang 267 4705 2000 10.1046/j.1432-1327.2000.01521.x Wang K, Spector A (2000) a-Crystalline prevents irreversible protein denaturation and acts cooperatively with other heat-shock proteins to renature and stabilize partially denatured protein in an ATP-dependent manner. Eur J Biochem 267: 4705-4712 

  50. J Exp Biol ER Waters 47 325 1996 Waters ER, Lee G, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Biol 47: 325-338 

  51. Mol Biol Evol ER Waters 16 127 1999 10.1093/oxfordjournals.molbev.a026033 Waters ER, Vierling E (1999) The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16: 127-139 

  52. Yu JH (2004) Functional analyses of cytosolic small heat shock protein and mitochondrial small heat shock protein inNicotiana tabacum. M.S. thesis, Seoul National University, Seoul 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로