$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Small heat-shock proteins (sHsps) are ubiquitous stress proteins with molecular chaperone activity. They share characteristic homology with the $\alpha-crystallin$ protein of the mammalian eye lens as well as being ATP. independent in their chaperone activity. We isolated a clone for a cytosolic class I sHsp, NtHSPI7.6, from Nicotiana tabacum, and analyzed its functional mode for such activity. Following its transformation into Escherichia coli and its over-expression, NtHSP17.6 was purified and examined in vitro. This purified NtHSP17.6 exhibited typical chaperone activity in a light­scattering test It was enable to protect a model substrate, firefly luciferase, from heat-induced aggregation. Non­denaturing PAGE showed that NtHSP17.6 formed a dodecamer in its native conformation, and was bound to its substrate under heat stress. A labeling test with bis-ANS indicated that this binding might be linked to newly exposed hydrophobic sites of the NtHSP17.6 complexes during heat shock. Based on these data, we suggest that NtHSP17.6 is a molecular chaperone that functions as a dodecamer in a heat-induced manner.

참고문헌 (52)

  1. Agashe VR, Hartl F-U (2000) Roles of molecular chaperones in cytoplasmic protein folding. Cell Dev Biol 11: 15-25 
  2. Anderson LO, Borg H, Mikaelsson M (1972) Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett 20: 199-202 
  3. Ehrnsperger M, Lilie H, Gaestel M, Buchner J (1999) The dynamics of Hsp25 quaternary structure. J Biol Chem 274: 14867-14874 
  4. Horwitz J (1992) Alpha-crystalline can function as a molecular chaperone. Proc Natl Acad Sci USA 89: 10449-10453 
  5. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 277: 38468-38475 
  6. Park SM, Hong CB (2002) Class I small heat-shock protein gives thermotolerance in tobacco. J Plant Physiol 159: 25-30 
  7. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning; A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, New York 
  8. Wang K, Spector A (2000) $\alpha$-Crystalline prevents irreversible protein denaturation and acts cooperatively with other heat-shock proteins to renature and stabilize partially denatured protein in an ATP-dependent manner. Eur J Biochem 267: 4705-4712 
  9. Waters ER, Lee G, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Biol 47: 325-338 
  10. de Jong WW, Leunissen JAM, Voorter CEM (1993) Evolution of the $\alpha$-crystalline/small heat shock protein family. Mol Biol Evol 10: 103-126 
  11. Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: A temperature-regulated chaperone. EMBO J 18: 6744-6751 
  12. Yu JH (2004) Functional analyses of eytosolic small heat shock protein and mitochondrial small heat shock protein in Nicotiana tabacum. M.S. thesis, Seoul National University, Seoul 
  13. Basha E, Lee GJ, Demeler B, Vierling E (2004b) Chaperone activity of cytosolic small heat shock proteins from wheat. FEBS Lett 271 : 1426-1436 
  14. Jaenicke R (1995) Folding and association versus misfolding and aggregation of proteins. Phil Trans R Soc Land B Biol Sci 348: 97-105 
  15. Joe MK, Park SM, Lee YS, Hwang OS, Hong CB (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol Cells 5: 519-524 
  16. Schumacher RJ, Hurst R, Sullivan WP, McMahon NJ, Toft DO, Matts RL (1994) ATP dependent chaperoning activity of reticulocyte lysate. J Biol Chem 269: 9493-9499 
  17. Kim KP, Joe MK, Hong CB (2004) Tobacco small heatshock protein, NtHSP18.2, has broad substrate range as a molecular chaperone. Plant Sci 167: 1017-1025 
  18. Radford SE (2000) Protein folding: Progress made and promises ahead. Trends Biochem Sci 25: 611-618 
  19. Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E (2004a) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279: 75667575 
  20. Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79: 425-449 
  21. van Montfort R, Slingsby C, Vierling E (2002) Structure and function of the small heat shock protein/a-crystallin family of molecular chaperones., In AL Horwich, ed, Protein Folding in the Cell. Academic Press, New York, pp105-156 
  22. Schlieker C, Bukau B, Mogk A (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: Implications for their applicability in biotechnology. J Biotech 96: 13-21 
  23. Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16: 221-229 
  24. Lee GR, Roseman HR, Vierling E (1997) A small heat shock protein stably binds heat denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16: 659-671 
  25. Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18: 6934-6949 
  26. Ellis RJ (1997) Molecular chaperones: Avoiding the crowd. Curr Biol 7: R531-R533 
  27. Scharf KD, Siddique M, Vierling E (2001) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47: 325-338 
  28. Cho EK, Hong CB (2004) Molecular cloning and expression pattern analyses of heat shock protein 70 genes from Nicotiana tabacum. J Plant Biol 47: 149-159 
  29. Jinn TL, Yeh YC, Lin CY (1989) Stabilization of soluble proteins in vitro by heat shock protein-enriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol 30: 463-469 
  30. Smykal P, Hrdy I, Pechan PM (2000) High-molecular-mass complexes formed in vivo contain small Hsps and Hsp70 and display chaperone-like activity. Eur J Biochem 267: 2195-2207 
  31. Ehrnsperger M, Hergersberg C, Wienhues U, Nichtl A, Buchner J (1998) Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. Anal Biochem 259: 218-225 
  32. Sanger K, Nicklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 74: 5463-5467 
  33. de Jong WW, Caspers GJ, Leunissen JAM (1998) Genealogy of the $\alpha$-crystallin/small heat-shock protein superfamily. Intl J Biol Macromol 22: 151-162 
  34. Narberhaus F (2002) $\alpha$-Crystalline-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. NMBR 66: 64-93 
  35. Nover L (1990) Heat Shock Response. CRC Press, Boca Raton 
  36. Waters ER, Vierling E (1999) The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16: 127-139 
  37. Abdulle R, Mohindra A, Fernando p, Heikkia JJ (2002) Xenopus small heat shock proteins, Hsp30C and Hsp 300, maintain heat- and chemically denatured luciferase in a folding competent state. Cell Stress Chaper 7: 6-16 
  38. Haslbeck M (2000) sHsps and their role in the chaperone network. Cell Mol Life Sci 59: 1649-1657 
  39. Levy EJ, McCarty J, Bukau B, Chirico WJ (1995) Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulators. FEBS Lett 368: 435-440 
  40. Park SM (2002) Structural and functional diversity of small heat shock proteins in Nicotiana tabacum. Ph.D. thesis, Seoul National University, Seoul 
  41. Sharma KK, Kaur H, Kumar GS, Kester K (1998) Interaction of 1,1'-bis (4 anilino)naphthalene-5,5'-disulfonic acid with $\alpha$-crystalline. J Biol Chem 273: 8965-8970 
  42. Vierling E (1991) The role of heat shock-proteins in plant. Annu Rev Plant Physiol Plant Mol Bol 42: 579-620 
  43. Stromer T, Ehrnsperger M, Gaestel M, Buchner J (2003) Analysis of the interactions of small heat shock proteins with unfolding proteins. J Biol Chem 278: 18015-18021 
  44. Caspers GJ, Leunissen JAM, de Jong WW (1995) The expanding small heat-shock protein family and structure predictions of the conserved 'alpha-crystalline domain'. J Mol Evol 40: 238-248 
  45. Fu X, Chang Z (2004) Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis. Biochem Biophys Res Comm 316: 291-299 
  46. Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bernd B (2003) Small heat shock proteins, ClpB and the DnaK system, form a functional triad in reversing protein aggregation. Mol Microbiol 50: 585-595 
  47. Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multi-chaperone network. J Biol Chem 273: 11032-11037 
  48. Plesofsky-Vig N, Brambl R (1995) Disruption of the gene for hsp30, an a-crystalline-related heat shock protein of Neurospora crassa, causes defects in thermotolerance. Proc Natl Acad Sci USA 92: 537-545 
  49. Horwich AL, Weissman JL (1997) Deadly conformations protein misfolding in prion disease. Cell 74: 909-917 
  50. Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122: 189-198 
  51. Das KP, Surewicz WK (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of $\alpha$-crystalline. FEBS Lett 369: 321-325 
  52. Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat shock protein. Nature 394: 595-599 

이 논문을 인용한 문헌 (3)

  1. 2006. "" Journal of plant biology = 식물학회지, 49(6): 484~490 
  2. 2006. "" Journal of plant biology = 식물학회지, 49(3): 212~217 
  3. 2007. "" Journal of plant biology = 식물학회지, 50(2): 167~173 

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 함께 이용한 콘텐츠

DOI 인용 스타일