내 수문지열계 가운데 수주지열정(SCW)시스템을 합리적으로 설치이용할 수 있는 조건들은 심도별 지온증가율이 명확하고($2^{\circ}C/100m$심도), 기존의 지하수 열펌프가 필요로 하는 순환수의 유량에 비해 최소 $10{\sim}30%$의 중온의 심부지하수가 산출될 수 있어야 하며, 순환수를 공내로 재주입시 공내붕괴가 일어나지 않는 견고한 암석들이 존재 하여야 한다. 수주지열정의 1개공당 굴착심도는 평균 $400{\sim}500m$이며, 이로 부터 개발가능한 지열에너지는 공당 약 $30{\sim}40RT$ 규모인데 비해 1개 수직지중열교환기가 공급가능한 지열에너지는 $2{\sim}3RT$ 정도이다. 즉 수주지열정 1개공은 $10{\sim}15$개의 수직지중열교환기 역할을 한다. 따라서 이 방식은 수직루프 설치장소의 공간 문제를 해소할 수 있는 유일한 대안으로 인식되어, 현재 전국 각지에서 많은 수의 SCW들이 무분별 하게 비과학적으로 설치되고 있다. 이와 같이 해당지역 수문지열계의 수리 지질학적인 특성과 열적인 특성을 명확히 파악하지 않은 상태에서 수주지열정을 설계 시공하는 경우에 나타날 문제점들은 추후 합리적인 천부지열 개발 이용에 지대한 장애요인이 될 것이다. 따라서 본고는 국내 수문지열계에 적합한 수주지열정을 설계 하는데 있어 필요한 일종의 지침서를 제시하기 위해 작성되었다.
내 수문지열계 가운데 수주지열정(SCW)시스템을 합리적으로 설치이용할 수 있는 조건들은 심도별 지온증가율이 명확하고($2^{\circ}C/100m$심도), 기존의 지하수 열펌프가 필요로 하는 순환수의 유량에 비해 최소 $10{\sim}30%$의 중온의 심부지하수가 산출될 수 있어야 하며, 순환수를 공내로 재주입시 공내붕괴가 일어나지 않는 견고한 암석들이 존재 하여야 한다. 수주지열정의 1개공당 굴착심도는 평균 $400{\sim}500m$이며, 이로 부터 개발가능한 지열에너지는 공당 약 $30{\sim}40RT$ 규모인데 비해 1개 수직지중열교환기가 공급가능한 지열에너지는 $2{\sim}3RT$ 정도이다. 즉 수주지열정 1개공은 $10{\sim}15$개의 수직지중열교환기 역할을 한다. 따라서 이 방식은 수직루프 설치장소의 공간 문제를 해소할 수 있는 유일한 대안으로 인식되어, 현재 전국 각지에서 많은 수의 SCW들이 무분별 하게 비과학적으로 설치되고 있다. 이와 같이 해당지역 수문지열계의 수리 지질학적인 특성과 열적인 특성을 명확히 파악하지 않은 상태에서 수주지열정을 설계 시공하는 경우에 나타날 문제점들은 추후 합리적인 천부지열 개발 이용에 지대한 장애요인이 될 것이다. 따라서 본고는 국내 수문지열계에 적합한 수주지열정을 설계 하는데 있어 필요한 일종의 지침서를 제시하기 위해 작성되었다.
For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design fl...
For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.
For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
문제 정의
이와 같이 해당 수문지열계의 수리 및 열적특성을 감안하지 않고 외국에서 사용했던 단순한 사례나 국내에서 실시한 몇개의 단기적인 성능평가 결과만을 바탕으로(수주지열정의 단기적인 장점만을 바탕으로) 수주지열 시스템을 설계, 운영하는 경우에 나타날 부정적인 결과는 자명하다.
본고는 한국수자원공사의 위탁사업으로 시행중인 강변여과수(충적층 및 하상 지하수)지열 자원 활용 기술의 일환으로 지원열펌프시스템을 심정과 연계시켜 분석한 내용이다. 특히 본고를 작성하는데 있어 필요한 많은 정보를 제공해준 (주)시엔이(CNE)에게 감사를 드리며 심사 과정에서 적절한 지적과 수정을 해주신 익명의 심사위원님께 감사를 드린다.
대상 데이터
이 시스템은 일부 지하수를 이용하는 시설이므로 기존 지하수법에 따라 지하수 이용부담금은 물론 지하수 영향평가 대상 시설이다. 이는 추후 지하수열펌프와 수주지열정 이용의 원가와 운영비 상승에 지대한 악재로 작용할 것이다.
성능/효과
큰 단점인 설치공간 문제를 해소 할 수 있다는것이다. 즉, 지하수 산출율이 양호한 지역에서 지열추출 및 방열정으로 소요되는 천공수를 대폭 축소시킬수 있고 단기운전결과 수직 폐회로형 루프 시스템보다 성적계수가 높고 효율이 크다.
후속연구
주지적인 유지보수)하다. 부동액을 사용하지 않으므로 지하수 오염가능성을 최소화 시킬 수 있으며 추후 증설시 냉동기/보일러 등과 병용(hybrid형)할 수 있다.
대상 시설이다. 이는 추후 지하수열펌프와 수주지열정 이용의 원가와 운영비 상승에 지대한 악재로 작용할 것이다.
참고문헌 (8)
건교부 (2005) 개정지하수법 제30조의3 및 시행령 제40조의 3 p. 87-88
김진상 (2005) Standing Column Well 방식 지열히트펌프,에너지관리공단 p. 1-5
※ AI-Helper는 부적절한 답변을 할 수 있습니다.