$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

INVESTIGATION OF DRAG REDUCTION MECHANISM BY MICROBUBBLE INJECTION WITHIN A CHANNEL BOUNDARY LAYER USING PARTICLE TRACKING VELOCIMETRY 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.38 no.8, 2006년, pp.763 - 778  

Hassan Yassin A. (Department of Nuclear Engineering Texas A&M University College Station) ,  Gutierrez-Torres C.C. (Department of Nuclear Engineering Texas A&M University College Station)

Abstract AI-Helper 아이콘AI-Helper

Injection of microbubbles within the turbulent boundary layer has been investigated for several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not yet fully understood. Experiments in a channel flow for single phase (water) and two phase (water and...

주제어

참고문헌 (25)

  1. McCormick ME; Bhattacharyya R (1973) Drag Reduction of a Submersible Hull by Electrolysis. Naval Engineers Journal 11-16 

  2. Madavan NK; Merkle C.L; Deutsch, S (1985) Numerical Investigations into the Mechanisms of Microbubble Drag Reduction. Journal of Fluids Engineering 107: 370-377 

  3. Merkle CL; Deutsch S (1989) Microbubble Drag Reduction. Frontiers in Experimental Fluid Mechanics Ced. M. Lecture Notes in Engineering 46: 291-335 

  4. Moriguchi Y; Kato H (2002) Influence of microbubble diameter and distribution on fractional resistance reduction. Journal of Marine Science and Technology 7: 79-85 

  5. Xu J; Maxey MR; Karniadakis GE (2002) Numerical simulation of turbulent drag reduction using micro-bubbles. Journal of Fluid Mechanics. 468:271-281 

  6. Kawamura T; Moriguchi Y; Kato H; Kakugawa A; Kodama Y (2003) Effect of bubble size on the microbubble drag reduction of a turbulent boundary layer, 4th ASME-JSME Joint Fluid Engineering Conference, FEDSM-45645 

  7. Guin MM; Kato H; Yamaguchi H; Maeda M; Miyanaga M (1996) Reduction of Skin Friction by Microbubbles and its Relation with Near-Wall Bubble Concentration in a Channel. Journal of Marine Science and Technology 1: 241-254 

  8. Jimenez J; Pinelli A (1999) The Autonomous Cycle of Near-Wall Turbulence. J. Fluid Mech 389: 335-359 

  9. Kanai A; Miyata H (2001) Direct numerical simulation of wall turbulent flows with microbubbles. International Journal for Numerical Methods in Fluids 35:593-615 

  10. Warholic MD; Heist DK; Katcher M; Hanratty T J (2001) A study with particle-image velocimetry of the influence of drag-reducing polymers on the structure of turbulence. Experiments in fluids. 31: 474-483 

  11. Yamamoto Y; Uemura, T; & Kadota, S (2002) Accelerated super-resolution PIV based on successive abandonment method. In Proceedings of 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics 

  12. Hassan Y A; Blanchat T K; Seeley Jr C H (1992) Simultaneous velocity measurements of both components of a two-phase flow using particle image velocimetry. Int J. of Multiphase Flow 18: 371-395 

  13. Warholic MD (1997) Modification of turbulent channel flow by passive and additive devices. Ph.D. thesis, University of Illinois 

  14. Antonia, RA; Teitel, M; Kim, J; Browne, LW; (1992) Low-Reynolds-number effects in a fully developed turbulent channel flow. J. Fluid Mech. 236: 579-605 

  15. Warholic, MD; Massah H; Hanratty, TJ (1999) Influence of drag-reducing polmers on turbulence: effects of Reynolds number, concentration and mixing. Experiments in fluids. 27:461-472 

  16. Fischer, M.; Jovanovic, J; Durst, F; (2001). Reynolds number effects in the near-wall region of turbulent channel flows. Physics of Fluids 13: 1775-1767 

  17. Virk PS (1975) Drag reduction fundamentals. AIChE Journal. 21: 625-656 

  18. Wei T; Willmarth WW (1992) Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows. J. Fluid Mech. 245:619-641 

  19. Vlachogiannis M; Hanratty TJ (2004) Influence of wavy structured surfaces and large scale polymer structures on drag reduction. Experiments in Fluids. 36: 685-700 

  20. Sreenivasan KR (1988) A unified view of the origin and morphology of the turbulent boundary layer structure in turbulence management and relaminarisation. 37-61. eds Liepmann HW and Narasimha. Springer-Verlag, Berlin 

  21. Panton R L (1996) Incompressible Flow. John Wiley and Sons, Inc. 

  22. Lesieur M (1990) Turbulence in Fluids. Kluwer Academic Publishers 

  23. Vukoslavcecic P; Wallas JM; Balint J (1991) The Velocity and Vorticity Fields of a Turbulent Boundary Layer, part 1. Simultaneous Measurements by Hot-Wire Anemometry. Journal of Fluid Mechanics. 228:25-51 

  24. Meng JCS (1998) Wall Layer Microturbulence Phenomenological Model and Semi-Markov Probability Predictive Model for Active Control of Turbulent Boundary Layers. AIAA No. 98-2995 

  25. Bernard PS; Wallace JM; (2002) Turbulent Flow. Analysis Measurement, and Prediction. John Wiley and Sons, Inc. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로