$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

대한해협에서의 지진해일 전파특성과 지진해일고의 확률적 기술
Characteristics of Tsunami Propagation through the Korean Straits and Statistical Description of Tsunami Wave Height 원문보기

韓國海岸海洋工學會誌 = Journal of Korean society of coastal and ocean engineers, v.18 no.4, 2006년, pp.269 - 282  

조용준 (서울시립대학교 토목공학과) ,  이재일 (서울시립대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 강건한 지진해일모형인 비선형 천수 방정식에 기초하여 대한해협을 통과하는 지진해일의 전파특성에 관해 연구하였다. 지진해일은 쓰시마-고토 단층대에서 우리나라에 영향을 미친 지진 중 비교적 출현 빈도가 높은 리히터 규모 7.5의 지진에 의해 발생하는 것으로 가정하였다. 수치모의 결과 지진해일의 선도파랑이 대한해협을 횡단하는데 60분 정도가 소요되며 이는 지진해일 경보 시스템이 대피시간의 부족으로 인해 그 기능을 발휘하지 못할 수도 있음을 시사한다. 또한 전 쓰시마-고토 단층대에서 동일한 생기빈도를 가지는 지진사상에 대해 Kajiura(1963)의 동수역학 모형과 간단한 지진학적 모형을 활용한 지진해일 재해 모형이 제시되었다. 제시된 지진해일 재해 모형을 활용하여 우리나라 남해안 마산, 여수, 통영, 고흥 전면 해역에서의 각 수위별 지진해일고의 초과확률이 제시되었다. 이와 더불어 본고에서 제시한 지진해일 재해모형의 검증은 관측자료가 비교적 풍부한 동해 동연 오쿠시리 해령에서 1993년에 발생한 북해도 남서외해 지진해일과 Akita and Fukaura 두 곳에서 관측된 수위자료를 대상으로 수행되어 매우 고무적인 결과를 얻었다. 이 연구 결과들은 지진해일의 위험에 대한 연안방계 시스템의 설계기준의 수정을 위한 가치 있는 자료들로 활용될 수 있으리라 판단된다.

Abstract AI-Helper 아이콘AI-Helper

We numerically studied tsunami propagation characteristics through Korean Straits based on nonlinear shallow water equation, a robust wave driver of the near field tsunamis. Tsunamis are presumed to be generated by the earthquake in Tsuhima-Koto fault line. The magnitude of earthquake is chosen to b...

주제어

참고문헌 (26)

  1. Abbott, M.B. (1979). Computational Hydraulics, Elements of the Theory of Free Surface Flows. Pitman, London 

  2. Abbott, M.B. and Basco, D.R. (1989). Computational Fluid Dynamics, an Introduction for Engineers. Longman, London, and Wiley, New York 

  3. Abbott, M.B. and Cunge, J.A. (1982). Engineering Applications of Computational Hydraulics. Pitman, London 

  4. Abbott, M.B., McCowan, A.D. and Warren, J.R. (1981). Numerical Modelling of Free Surface Flows that are Two Dimensional in Plan, Transport Models for Inland and Coastal Waters, edited by Fischer, H.B., Academic Press, New York 

  5. Der Kiureghian, A. and Ang, A. H-S. (1975). A Line Source Model for Seismic Risk Analysis, Civil Engineering Studies, Structural Research Series, University of Illinois at Urbana-Champaign, Urbana, IL, USA 

  6. Garcia, A.W. and Houston, J.R. (1975). Type 16 flood insurance study: tsunami predictions for Monterey and San Francisco bays and Puget sound. Hydraulics Laboratory, U.S. Army Engineer Waterways Experiment Station, Technical Report H-75-11 

  7. Go, C.N. (1997). Statistical distribution of the tsunami heights along the coast. Tsunami and accompanied phenomena, Sakhalin, 7, 73-79 

  8. Houston, J.R. and Garcia, A.W. (1974). Type 16 flood insurance study: tsunami predictions for Pacific coastal communities. Hydraulics Laboratory, U.S. Army Engineer Waterways Experiment Station, Technical Report H-74-3 

  9. Houston, J.R., Carver, R.D. and Marckle, D.G. (1977). Tsunami wave elevation frequency of occurrence for the Hawaii island. Hydraulics Laboratory, U.S. Army Engineer Waterways Experiment Station, Technical Report H-77-16 

  10. Kajiura, K. (1963). The leading wave of a tsunami. Bulletin of the Earthquake Research Institute, University of Tokyo, 41, 535-571 

  11. Kajiura, K. (1983). Some statistics related to observed tsunami heights along the coast of Japan. Tsunamis - Their Science and Engineering. Terra Pub., Tokyo, 131-145 

  12. Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981-2987 

  13. Kanamori, H. and Anderson, D.L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of Seismological Society of America, 65(5), 1073-1095 

  14. Lee, Y.S., Ishikawa, N. and Kim, W.K. (1999). Paleomagnetism of tertiary rocks on the Korean peninsula: tectonic implications for the opening of the East Sea. Tectonophysics, 304, 131-149 

  15. Lin, I. Chen (1985). An investigation of tsunami hazard. Ph.D. dissertation, North Carolina State University, Raleigh, North Carolina, U.S.A 

  16. Lin, I. Chen and Tung, C.C. (1982). A preliminary investigation of tsunami hazard. Bulletin of the Seismological Society of America, 72(6), 2323-2337 

  17. Lin, I. Chen and Tung, C.C. (1986). Studies of tsunami hazard. Proceedings of 20th International Conference of Coastal Engineering, ASCE, 2593-2605 

  18. Loomis, H.G. (1976). Tsunami wave run-up heights in Hawaii. Hawaii Institute of Geophysical Research, University of Hawaii, Report No. HIG-76-5 

  19. Manshinha, L. and Smylie, D.E. (1971). The displacement of earthquake fault model. Bulletin of the Seismological Society of America, 61, 1400-1433 

  20. Molnar, P. (1979). Earthquakes recurrence intervals and plate tectonics. Bulletin of Seismological Society of America, 69(1), 115-133 

  21. Morse, P.M. and Feshbach, H. (1953). Methods of theoretical physics. McGraw-Hill, New York, N.Y 

  22. Papoulis. A. (1965). Probability, random variables and stochastic processes. McGraw-Hill, New York, N.Y 

  23. Van Dorn, W.G. (1965). Tsunamis. Advances in Hydroscience. Ed. V.T. Chow. Acad. Press, London, 2, 1-48 

  24. Wiegel, R.L. (1970). Earthquake engineering. Prentice-Hall, Englewood cliffs, N.J 

  25. Yoon, S.B. (2002). Propagation of distant tsunamis over slowly varying topography. Journal of Geophysical Research, 107(10) 

  26. 岡田義光 (2004). 日本の地震地. 東京書籍 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로