$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Biochemical Reactions on a Microfluidic Chip Based on a Precise Fluidic Handling Method at the Nanoliter Scale 원문보기

Biotechnology and bioprocess engineering : Bbe, v.11 no.2, 2006년, pp.146 - 153  

Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University) ,  Lee, Sang-Ho (School of Electrical Engineering and Computer Science, Seoul National University) ,  Kim, Yun-Gon (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University) ,  Choi, Chang-Hyoung (Department of Chemical Engineering, Chungnam National University) ,  Kim, Yong-Kweon (School of Electrical Engineering and Computer Science, Seoul National University) ,  Kim, Byung-Gee (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

A passive microfluidic delivery system using hydrophobic valving and pneumatic control was devised for microfluidic handling on a chip. The microfluidic metering, cutting, transport, and merging of two liquids on the chip were correctly performed. The error range of the accuracy of microfluid meteri...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • The fabrication process of the microfluidic chip. A. Photoresist (PR) patterning for the definition of a hydrophobic region. B.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Reyes, D. R., D. Iossifidis, P. A. Auroux, and A. Manz (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74: 2623-2636 

  2. Auroux, P. A., D. Iossifidis, D. R. Reyes, and A. Manz (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74: 2637-2652 

  3. Zhao, B., J. S. Moore, and D. J. Beebe (2001) Surfacedirected liquid flow inside microchannels. 291: 1023-1026 

  4. Ocvirk, G., M. Munroe, T. Tang, R. Oleschuk, K. Westra, and D. J. Harrison (2000) Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 21: 107-115 

  5. Gallardo, B. S., V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott (1999) Electrochemical principles for active control of liquids on submillimeter scales. Science 283: 57-60 

  6. Unger, M. A., H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288: 113- 116 

  7. Handique, K., D. T. Burke, C. H. Mastrangelo, and M. A. Burns (2001) On-chip thermopneumatic pressure for discrete drop pumping. 73: 1831-1838 

  8. Terray, A., J. Oakey, and D. W. Marr (2002) Microfluidic control using colloidal devices. 296: 1841-1844 

  9. Zhao, B., J. S. Moore, and D. J. Beebe (2002) Principles of surface-directed liquid flow in microfluidic channels. Anal. Chem. 74: 4259-4268 

  10. Hong, J. W., V. Studer, G. Hang, W. F. Anderson, and S. R. Quake (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 22: 435-439 

  11. Liu, J., C. Hansen, and S. R. Quake (2003) Solving the 'world-to-chip' interface problem with a microfluidic matrix. Anal. Chem. 75: 4718-23 

  12. Paik, P., V. K. Pamula, M. G. Pollack, and R. B. Fair (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3: 28-33 

  13. Srinivasan, V., V. K. Pamula, and R. B. Fair (2004) Droplet- based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507: 145-150 

  14. Cho, S. K., H. J. Moon, and C. J. Kim (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting- based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12: 70-80 

  15. Lee, C. S., S. H. Lee, S. S. Park, Y. K. Kim, and B. G. Kim (2003) Protein patterning on silicon-based surface using background hydrophobic thin film. Biosens. Bioelectron. 18: 437-444 

  16. Lee, S. H., C. S. Lee, B. G. Kim, and Y. K. Kim (2003) Quantitatively controlled nanoliter liquid manipulation using hydrophobic valving and control of surface wettability. J. Micromech. Microeng. 13: 89-97 

  17. Lee, S. H., S. I. Cho, C. S. Lee, B. G. Kim, and Y. K. Kim (2005) Microfluidic chip for biochemical reaction and electrophoretic separation by quantitative volume control. Sens. Actuators B Chem. 110: 164-173 

  18. Mrksich, M., C. S. Chen, Y. Xia, L. E. Dike, D. E. Ingber, and G. M. Whitesides (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. USA 93: 10775-10778 

  19. Li, B. M. and D. Y. Kwok (2003) A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson- Boltzmann equation. Int. J. Heat Mass Tran. 46: 4235-4244 

  20. Park, S. S., H. S. Joo, S. I. Cho, M. S. Kim, Y. K. Kim, and B. G. Kim (2003) Multi-step reactions on microchip platform using nitrocellulose membrane reactor. Biotechnol. Bioprocess Eng. 8: 257-262 

  21. Labrousse, H., J. L. Guesdon, J. Ragimbeau, and S. Avrameas (1982) Miniaturization of beta-galactosidase immunoassays using chromogenic and fluorogenic substrates. J. Immunol. Methods 48: 133-147 

  22. Wu, C. F., H. J. Cha, G. Rao, J. J. Valdes, and W. E. Bentley (2000) A green fluorescent protein fusion strategy for monitoring the expression, cellular location, and separation of biologically active organophosphorus hydrolase. Appl. Microbiol. Biotechnol. 54: 78-83 

  23. Johnvesly, B., D. G. Kang, S. S. Choi, J. H. Kim, and H. J. Cha (2004) Comparative production of green fluorescent protein under co-expression of bacterial hemoglobin in Escherichia coli W3110 using different culture scales. Biotechnol. Bioprocess Eng. 9: 274-277 

  24. Stiege, W. and V. A. Erdmann (1995) The potentials of the in vitro protein biosynthesis system. J. Biotechnol. 41: 81-90 

  25. Ahn, J. H., C. Y. Choi, and D. M. Kim (2005) Effect of energy source on the efficiency of translational termination during cell-free protein synthesis. Biochem. Biophys. Res. Commun. 337: 325-329 

  26. Kim, D. M., T. Kigawa, C. Y. Choi, and S. Yokoyama (1996) A highly efficient cell-free protein synthesis system from Escherichia coli. Eur. J. Biochem. 239: 881-886 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로