$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Temporal 데이터의 최적의 클러스터 수 결정에 관한 연구

A Study for Determining the Best Number of Clusters on Temporal Data

초록

Temporal 데이터의 클러스터링 방법론 중의 하나로 모델기반 방법론이 있다. 이는 각 클러스터에 대하여 오토마타기반의 모델을 가정하는 것이다. 개별 모델을 추출하기 위해서는 먼저 전체 데이터에 대한 적합한 모델을 찾는 것이 필요하다. 전체에 대한 모델은 데이터집합에 대한 최적의 클러스터의 수를 결정함으로 개별 모델 구축의 준비를 완료한다. 본 연구에서는 클러스터 수를 결정하기 위한 기준인 베이지안 정보기준(BIC : Bayesian Information Criterion) 근사법의 활용도를 검증하고 데이터 크기와 BIC 값의 상관관계를 파악함으로 탐색 효율을 높이는 방안을 제안한다. 실험에서는 인위적 모델을 통하여 생성된 인공적인 여러 형태의 데이터집합을 활용하여 BIC근사 측도의 활용성에 대해 살펴보았다. 실험결과에서 보여주는 것처럼 BIC 근사 측도는 데이터의 크기가 비교적 클 경우에 올바른 파티션의 사이즈를 추정함을 확인하였다.

Abstract

A clustering method for temporal data takes a model-based approach. This uses automata based model for each cluster. It is necessary to construct global models for a set of data in order to elicit individual models for the cluster. The preparation for building individual models is completed by determining the number of clusters inherent in the data set. In this paper, BIC(Bayesian Information Criterion) approximation is used to determine the number clusters and confirmed its applicability. A search technique to improve efficiency is also suggested by analyzing the relationship between data size and BIC values. A number of experiments have been performed to check its validity using artificially generated data sets. BIC approximation measure has been confirmed that it suggests best number of clusters through experiments provided that the number of data is relatively large.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일