$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Plasmid- and Chromosome-Mediated Assimilation of Phenol and Cyanide in Pseudomonas sp. Strain PhCN 원문보기

Journal of microbiology and biotechnology, v.16 no.7, 2006년, pp.1068 - 1077  

El-Deeb Bahig A. (Botany Department, Genetic Laboratory, Faculty of Science, South Valley University)

Abstract AI-Helper 아이콘AI-Helper

Pseudomonas sp. PhCN strain, which has the potential to utilize phenol and cyanide as a sole carbon and nitrogen source, was isolated. A comparison of the effect of cyanide on phenol degradation and vice versa by strain PhCN showed that the degradation time was significantly delayed by an increase i...

주제어

참고문헌 (45)

  1. Adjei, M. D. and Y. Ohta. 2000. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C3. J. Biosci. Bioeng. 89: 274-277 

  2. Ausubel, F. M., R. E. Brent, R. E. Kingston, D. D. Moore, J. A. Seidman, J. A. Smith, and K. Struhi. 1987. Current Protocols in Molecular Biology. Greene Publishing Associates, New York, NY 

  3. Arutchelvan, A., V. Kanakasabai, S. Nagarajan, and V. Muralikrishnan. 2005. Isolation and identification of novel high strength phenol degrading bacterial strains from phenolformaldehyde resin manufacturing industrial wastewater. J. Hazard. Mat. B27: 238-243 

  4. Bodzek, M., J. Bohdziewicz, and M. Kowalska. 1996. Immobilized enzyme membranes for phenol and cyanide decomposition. J. Memb. Sci. 113: 373-384 

  5. Brenner, V, B. S. Hernandez, and D. D. Focht. 1993. Variation in chlorobenzoate catabolism by Pseudomonas putida P111 as a consequence of genetic alterations. Appl. Environ. Microbiol. 59: 2790-2794 

  6. Carlton, B. C. and B. J. Boown. 1981. Gene mutation, pp. 222-242. In P. Gerhardt (ed.), Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, D.C 

  7. Chakrabarty, A. M. 1976. Plasmids in Pseudomonas. Annu. Rev. Genet. 10: 7-30 

  8. Chena, S. C. and J. K. liu. 1999. The responses to cyanide of a cyanide-resistant Klebsiella oxytoca bacterial strain. FEMS Microbiol. Lett. 175: 37-43 

  9. Chiang, K., R. Amal, and T. Tran. 2002. Photocatalytic degradation of cyanide using titanium dioxide modified with copperoxide. Adv. Environ. Res. 6: 471-485 

  10. Dorn, E. and H. J. Knaekmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. J. Biochem. 174: 85-94 

  11. Fedorak, P. M., D. J. Roberts, and S. E. Hurdey. 1986. The effects of cyanide on the methanogenic degradation of phenolic compounds. Water Res. 20: 1315-1320 

  12. Finnegan, I., S. Toerien, L. Abbot, F. Smit, and H. G. Raubenheimer. 1991. Identification and characterization of a Acinetobacter sp. capable of assimilation of a range of cyanometal complexes, free cyanide ions and simple organic nitriles. Appl. Microbiol. Biotechnol. 36: 142-144 

  13. Fisher, F. B. and J. S. Brown. 1952. Colorimetric determination of cyanide in stack gas and water. Anal. Chem. 24: 1440-1444 

  14. Folsom, B. R., P. J. Chapman, and R. Pritchard. 1990. Phenol and trichloroethylene degradation by Pseudomonas cepacia 4: Kinetics and interactions between substrates. Appl. Environ. Microbiol. 56: 1279-1285 

  15. Fujita, M., M. Ike, and H. Kamiya. 1993. Accelerated phenol removal by amplifying the gene expression with a recombinant plasmid encoding catechol-2,3-oxygenase. Water Res. 27: 9-13 

  16. Hansen, J. B. and R. Olsen. 1978. Isolation of large bacterial plasmid and characterization of the p2 incompatibility group plasmids pMG1 and pMG2. J. Bacteriol. 135: 227-238 

  17. Harris, R. E. and C. J. Knowles. 1989. Isolation and growth of Pseudomonas species that utilize cyanide as a source of nitrogen. J. Gen. Microbiol. 129: 1005-1011 

  18. Heinaru, E., J. Truu, U. Stotrneister, and A. Heinaru. 2000. Three types of phenol and p-cresol catabolism in phenoland p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds. FEMS Microbiol. Ecol. 31: 195-205 

  19. Hill, G. A. and C. W. Robinson. 1975. Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida. Biotechnol. Bioeng.17: 1599-1615 

  20. Hinteregger, C., R. M. Leitner, A. Loid, A. Freshl, and F. Streichsbier. 1992. Degradation of phenol and phenolic compounds by Pseudomonas putida EKH. Appl. Microbiol. Biotechnol. 37: 252-259 

  21. Ingvorsen, K., B. Hojer-Pedersen, and S. E. Godtfredsen. 1991. Novel cyanide hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificants. Appl. Environ. Microbiol. 57: 1783-1789 

  22. Kado, C. I. and S. J. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365-1373 

  23. Kang, S. M. and S. J. Kim. 1993. Degradation of cyanide by a bacterial mixture composed of new types of cyanidedegrading bacteria. Biotechnol. Lett. 15: 201-206 

  24. Kang, M. H. and J. M. Park. 1997. Sequential degradation of phenol and cyanide by a commensal interaction between two microorganisms. J. Chem. Technol. Biotechnol. 69: 226-230 

  25. Kao, C. M., J. K. Liu, H. R. Lou, C. S. Lin, and S. C. Chen. 2003. Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50: 1055-1061 

  26. Karns, J. S. 1990. Molecular genetics of pesticide degradation by soil bacteria. ACS Symposium Series 426: 141-152 

  27. Kivisaar, A. M., K. J. Habicht, and L. A. Heinaru. 1989. Degradation of phenol and m-toluate in Pseudomonas sp. strain ES1001 and its Pseudomonas putida transconjugants is determined by a multiplasmids system. J. Bacteriol. 171: 5111-5116 

  28. Knowles, C. J. and A. W. Bunch. 1986. Microbial cyanide metabolism. Adv. Microb. Physiol. 27: 73-111 

  29. Lin, C. S. and C. I. Kado. 1977. Studies on Agrobacterium tumefaciens. VII. A virulence induced by temperature and ethidium bromide. Can. J. Microbiol. 23: 1554-1561 

  30. Luque-Almagro, V. M., M. J. Huertas, M. Martinez-Laque, C. Moreno-Vivian, M. R. Roldan, L. J. Garcia-Gil, F. Gastillo, and R. Blasco. 2005. Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl. Environ. Microbiol. 71: 940-947 

  31. Mishra, V., R. Lal, and S. Srinivasan. 2001. Enzymes and operons mediating xenobiotic degradation in bacteria. Crit. Rev. Microbiol. 27: 133-166 

  32. Myers, P. R., P. Gokool, D. E. Rawlings, and D. R. Woods. 1992. An efficient cyanide-degrading Bacillus pumilus strain. J. Gen. Microbiol. 137: 1397-1400 

  33. Palleroni, N. J. 1984. Gram-negative aerobic rods and cocci, family 1 Pseudomonadaceae, pp. 144-199. In Krieg, N. R. and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, London 

  34. Parkin, G. F. and R. E. Speece. 1983. Attached versus suspended growth anaerobic reactors: Response to toxic substances. Water Sci. Technol. 15: 261-289 

  35. Peters, M., E. Heinaru, E. Talpsep, H. Ward, U. Stottmeister, A. Heinaru, and A. Nurk. 1997. Acquisition of a deliberately introduced phenol degradation operon, pheAB, by different indigenous Pseudomonas species. Appl. Environ. Microbiol. 63: 4899-4906 

  36. Powlowski, J. and V. Shingler. 1994. Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5: 219-236 

  37. Qureshi, A., S. K. Prabu, and H. J. Purohit. 2001. Isolation and characterization of Pseudomonas strain for degradation of 4-nitrophenol. Microb. Environ. 16: 49-52 

  38. Santos, V. L. and V. R. Linardi. 2004. Biodegradation of phenol by filamentous fungi isolated from industrial effluentsidentification and degradation potential. Proc. Biochem. 39: 1001-1006 

  39. Shivararnan, N. and N. M. Parhad. 1985. Degradation of cyanide by a bacterial mixture composed of new types of cyanide-degrading bacteria. Indian J. Microbiol. 25: 79-82 

  40. Kang, S. M. and D. J. Kim. 1993. Degradation of cyanide by a bacterial mixture composed of new types of cyanide-degrading bacteria. Biotechnol. Lett. 15: 201-206 

  41. Skowronski, B. and G. A. Strobel. 1969. Cyanide resistance and cyanide utilization by a strain of Bacillus pumulis. Can. J. Microbiol. 15: 93 -98 

  42. Stephen, T. L. T., Y. P. M. Benjamin, M. M. Abudi, and H. T. Joo. 2005. Comparing activated sludge and aerobic granules as microbial inocula for phenol degradation. Appl. Microbiol. Biotechnol.67: 708-713 

  43. Watanabe, A., K. Yano, K. Ikebukuro, and I. Karube. 1998. Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61. Appl. Microbiol. Biotechnol. 50: 93-97 

  44. White, J. M., D. D. Jones, D. Hung, and J. J. Gauthier. 1988. Conversion of cyanide to formate and ammonia by Pseudomonas from industrial wastewater. J. Ind. Microbiol. 3:263-272 

  45. Yanase, H., A. Sakamoto, K. Okamoto, K. Kita, and Y. Sato. 2000. Degradation of the metal-cyano complex tetracyanonikelate (II) by Fusarium oxysporium N-10. Appl. Microbiol. Biotechnol. 53: 328-334 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로