$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

임펄스 잡음에 의해 훼손된 이진 디지탈 서류 영상의 복구 방법들의 비교 평가

Evaluation of Restoration Schemes for Bi-Level Digital Image Degraded by Impulse Noise

초록

디지탈 변환과 기기간의 전송 영향으로 화질이 떨어진 디지탈 영상의 복구는 잡음 발생 및 그 역 과정의 모형화를 통해 이루어낼 수 있다. 스캐너로 읽혀진 서류 영상이나 위성 사진에서 잡음 및 반점을 제거하는 과정이 좋은 예이다. 그러나 잡음 발생의 비선형성은 그 역 과정의 이론적 이해를 어렵게한다. 본 논문에서는 충격 잡음에의해 화질이 떨어진 이진 서류 영상의 복구 방법들을 심층 분석하는 것에 촛점을 맞추었다. 본 연구 결과에 의하면 이진 서류 영상의 잡음 제거 방식으로 '가중 중앙값' 여과기와 '리' 여과기가 다른 여과기에 비해 효과적임을 보여준다. 반면 '웨이브렛' 여과 방식은 타 방식보다 100여배의 시간이 소요되어 비효율적이다. 본 논문에서는 가중 중앙값 여과기에 쓰이는 가중치에 대한 연구 결과를 제시하였다.

Abstract

The degradation and its inverse modeling can achieve restoration of corrupted image, caused by scaled digitization and electronic transmission. De-speckle process on the noisy document(or SAR) images is one of the basic examples. Non-linearity of the speckle noise model may hinder the inverse process. In this paper, our study is focused on investigation of the restoration methods for bi-level document image degraded by the impulse noise model. Our study shows that, on bi-level document images, the weighted-median filter and the Lee filter methods are very effective among other spatial filtering methods, but wavelet filter method is ineffective in aspect of processing speed: approximately 100 times slower. Optimal values of the weight to be used in the weighted median filter are investigated and presented in this paper.

저자의 다른 논문

참고문헌 (26)

  1. Gonzalez, R. C. and Woods, R. E., 'Digital Image Processing,' 2nd Edition, Prentice-Hall, 2002 
  2. CCITT Recommendation T. 4, 'Standardization of Group 3 Facsimile Apparatus for Document Transmission,' 1981 
  3. CCITT Recommendation T. 6, 'Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile Apparatus,' 1986 
  4. ITU-T Recommendation T.82/ISO/IEC 11544:1993, 'Coded representation of Picture and Audio Inforrnation-Progressive Bi-Level Image Compression,' 1992 
  5. ITU-T SG8/ISO/lECJTC l/SC 29/WGl l4493:1999, 'Information Technology - Coded Representation of Pictures and Audio Information - Lossy/lossless Coding of Bi-level Images,' 1999 
  6. Urban, Stephen J., 'Review of Standards for Electronic Imaging for Facsimile systems,' Journal of Electronic Imaging, Vol.1, No.1, pp.5 - 21, Jan, 1992 
  7. Intel, 'Fast Algorithms Median Filtering,' A79835-2001, 2001 
  8. Lee, J S., 'Digital Image Enhancement and Noise Filtering by Use of Local Statistics,' IEEE Trans. on PAMI, Vol.2, No.2, pp.165-168, 1980 
  9. Lee, J S., 'Refined Filtering of Image Noise Using Local Statistics,' CGIP, Vol.15, pp.380-389, 1981 
  10. Frost, V., Stiles, J. Shanmugan, K., and Holtzman, J. 'A Model for Radar Images and Its Application to Adaptive Digital Filtering and Multiplicative Noise,' IEEE Trans. on PAMI, Vol.4, pp.157-166, Mar., 1982 
  11. Lopes, A, Nezry, E., Touzi, R., and Laur, H., 'Structure Detection and Statistical Adaptive Speckle Filtering in SAR Image,' Int. J Remote Sensing, Vol.14, pp.1745-1758, June, 1993 
  12. Donoho, D. L., 'De-noising by soft-thresholding,' IEEE Trans. On Inf. Theory, Vol.41, No.3, 1995 
  13. Kuan, D. T., Sawchuk, A. A., Strand, T. C., Chavel, P., 'Adaptive noise smoothing filter for images with signal dependent noise,' IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.7, No.2, pp.165-177, 1985 
  14. Rangayyan, R. M., Das, A, 'Filtering multiplicative noise in images using region-based statistics,' Journal of Electronic Imaging, Vol.7, No.1, pp.222-230, jan., 1998 
  15. Daubechies, I., 'Orthonormal Bases of Compactly Supported Wavelets,' C.P.A.M., Vol.41, No.7, pp.909-996, 1988 
  16. Laine, A F. and Zong, X, 'A Multiscale Sub-Octave Wavelet Transform for De-Noising and Enhancement,' Wavelet Applications in Signal and Image Processing IV, Proceedings of SPI, Vol.2825, pp.238-249, Denver, CO, 1996 
  17. Achim, A, Bezerianos, A, and Tsakalides, P., 'Novel Baysian multiscale methods for speckle removal in medical ultrasound images,' IEEE Trans. Med. Imaging., Vol.20, pp.772-783, Aug., 200l 
  18. Achim, A., Tsakalides, P., Bezerianos, A., 'SAR Image Denoising via Baysian Wavelet Shrinkage Based on HeavyTailed Modeling,' IEEE Trans. on Geosci. and Remote Sensing, Vol.41 , No.8, Aug., 2003 
  19. Xie, H., Pierce, L. E., and Ulaby, F. T, 'SAR speckle reduction using wavelet denoising and Markov random field modeling,' IEEE Trans. on Geosci. and Remote Sensing, Vol.40, pp.2196-2212, Oct., 2002 
  20. Xie, H., Pierce, L. E., and Ulaby, F. T, 'Statistical properties of logarithmically transformed speckle,' IEEE Trans. on Geosci. and Remote Sensing, Vol.40, pp.721-727, Mar., 2002 
  21. Yu, Y, Acton, S. T, 'Speckle Reducing Anisotropic Diffusion,' IEEE Trans. on Image Processing, Vol.11, No.11, Nov., 2002 
  22. Lee, J S., Jurkevich, I., Dewaele, P., Warnbacq, P., Oosterlinck, A., 'Speckle filtering of synthetic aperture radar images: a review,' Remote Sensing Review, Vol.8, pp.313-340, 1994 
  23. Gagnon, L, and jouan, A., 'Speckle filtering of SAR images-a comparative study between complex-wavelet based and standard filters,' SPIE proc. No.3169, pp.89-91, 1997 
  24. Desnos, Y L., and Matteini, V., 'Review on structure detection and speckle filtering on ERS-1 images,' EARSel Advances in Remote Sensing, Vol.2, No.2, pp.52-65, 1993 
  25. Uspensky, R.V., 'Theory of Equations,' New York, McGraw-Hill, 1948 
  26. Jain, A. K. 'Fundamentals of Digital Image Processing,' Prentice-Hall. 1990 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일