검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
데이타 웨어하우스는 기업이나 사회 전반에서 사용되는 방대한 데이타를 저장하고, 효율적인 분석을 가능하게 하는 데이타 저장소로써, 점점 그 활용도가 증가하고 있다. 본 연구에서는 이러한 데이타 웨어하우스 구축 기술의 핵심이 되는 다차원 데이타 큐브 (multidimensional data cube) 기술을 연구하는 데 목적이 있다. 고차원 데이타 큐브에는 필연적으로 내재하는 데이타의 희소성 (sparsity)에 의한 검색 오버헤드가 있다. 본 연구에서는 이러한 오버헤드를 현격하게 감소시키는 알고리즘을 제시함으로써, 데이타 웨어하우스의 효율을 높이는 데 기여한다. 즉, 고차원의 희소 데이타 큐브에서 데이타가 조밀하게 밀집된 영역들을 찾아 그 영역을 중심으로 서브 큐브를 구축하여, 데이타 검색 시에 전체의 데이타 큐브를 대상으로 하지 않고 해당 서브 큐브만으로 검색 대상을 제한시킴으로써 검색 효율을 높이는 알고리즘이다. 본 논문에서는 다 차원 대용량의 희소 데이타 큐브로부터 밀도가 높은 서브 큐브를 찾기 위하여 비트맵과 히스토그램에 기반한 알고리즘을 제안하며, 실험을 통하여 제안한 알고리즘의 효용성을 보여준다.
A data warehouse is a data repository that enables users to store large volume of data and to analyze it effectively. In this research, we investigate an algorithm to establish a multidimensional data cube which is a powerful analysis tool for the contents of data warehouses and databases. There exists an inevitable retrieval overhead in a multidimensional data cube due to the sparsity of the cube. In this paper, we propose a dense sub-cube extraction algorithm that identifies dense regions from a large sparse data cube and constructs the sub-cubes based on the dense regions found. It reduces the retrieval overhead remarkably by retrieving those small dense sub-cubes instead of scanning a large sparse cube. The algorithm utilizes the bitmap and histogram based techniques to extract dense sub-cubes from the data cube, and its effectiveness is demonstrated via an experiment.
원문 PDF 다운로드
원문 URL 링크
원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)
DOI 인용 스타일